京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解析车辆大数据对智能交通发展的影响
随着经济快速发展,城市机动车保有量持续增加,不仅加大了交通管理的难度,而且涉车涉驾的案件比例也不断上升,特别是盗抢机动车辆、机动车肇事逃逸以及涉车类刑事案件,严重影响了社会治安状况,损害了人民群众利益。而随着平安城市建设的扩大深入和资源整合,公安通过自建卡口电警系统加强了车辆管控,掌握了大量的车辆卡口数据和图片。
解析车辆大数据对智能交通发展的影响
过车信息的爆发式增长得益于三个方面:
一、按照中共中央办公厅和国务院办公厅印发《关于加强社会治安防控体系建设的意见》关于各地加快公共安全视频监控系统建设,全面提高社会治安防控体系的科技化水平要求,前端车辆抓拍点位的建设规划质量、成像效果等直接影响车辆大数据研判系统应用成效的因素都会提出优化和改进措施。包括:根据城市地域特点和布局规划,道路按照“科学布局、围绕实战、建用结合”的方法,通过治安卡口防控系统,基于“圈”、“块”、“格”、“线”、“点”的逻辑布局,在全市构建技术防控“圈”、责任明晰的管控“块”、基本封闭的单元“格”、掌握人车动态的轨迹“线”,以及防控有效的关键“点”,从而实现“区域全面监控、时空无缝衔接、目标全程追踪”的防控效果。
二、前端摄像机的智能化水平提升,使得车牌识别技术在常规视频监控系统中得到快速普及。以往需要在路口部署标准的卡口摄像机,现在可以在路段中间部署简易卡口摄像机,在对普通监控场景录像的同时自动捕获和识别车辆和车牌信息;此外,对社区出入口、加油站、停车场出入口等车辆进出口部署微型卡口摄像机,利用地形封闭的特点,对出入车辆实现自动抓拍和识别。
三、深度学习技术的发展,推动了图片结构化和特征提取的能力。早期建设的卡口系统,智能分析能力弱,图片质量以及车牌识别准确率较低,经常要根据品牌型号颜色等车辆自身固有信息,从海量过车图片或视频中,人工查找目标车辆,由于一线警力有限、劳动强度大、车型种类多、光线角度不确定等因素,无法保证查找的准确性和时效性,特别是突发紧急事件,经常贻误最佳处理时机。通过使用车辆深度学习系统,对前端卡口或简易卡口获取的过车图片进行特征结构化分析识别,充分挖掘海量的卡口过车图片中有价值信息,不但可以提高车牌车型的准确率,而且增加了车辆特征的识别信息,实现了车辆子品牌、车身颜色、不系安全带、驾驶员接打电话、遮阳板状态等识别检测功能,对过车数据进行精细化校正,摆脱了传统单纯依靠车牌进行分析研判的单一手段,为卡口电警数据提供了更加丰富实用的车辆防控应用,可以实现对高危车辆的有效预警防控,优化警力部署进行针对性车辆排查,可以在大量涉车涉驾案件中有效锁定嫌疑车辆,提高刑事侦查效能,使治安防控手段从事后被动侦查向事前主动预警转变。
大数据提升城市治安及管理水平
大数据的价值在于通过对大数据进行高速捕获和实时分析,及时获取核心业务和战略决策所需的关键信息,提升管理决策水平。
依据统计学,任何动态发展的事物,只要有足够多的样本数据,就一定能从样本数据中找到动态发展的规律。数据越多,准确率越高,这就是数据的价值所在。对于商业应用,可以通过数据分析用户行为规律从而提高销售量、分析市场规律从而定点投放广告降低成本;对于公安行业,可以通过数据分析区域性犯罪趋势,提前预防从而降低犯罪率,可以分析交通行为规律,提前做交通疏导,提高交通通畅率。
2016年1月,政法委书记孟建柱同志提出大数据的八个推动,要求:1、推动理念创新,顺应互联网时代的要求,确立合作、互通、共赢理念。2、推动风险共担,运用众创、众包、众智理念,让大众的问题由大众来解决。3、推动“数据文化”,坚持用数据说话,防止拍脑袋随意决策。4、推动创新风险预警机制,探索“人力 科技”、“传统 现代”的风险预警模式。5、推动科技运用创新,大数据表示的是过去,但表达的是未来,得数据者得未来。6、推动运用新技术,加强基层基础建设,把“不起眼”的信息汇集起来。7、推动社会信用体系建设,坚持推行实名制和保护公民个人信息安全并重。8、推动国家信息安全维护,避免被他国“窃夺”数据信息控制权。
大数据通过对海量数据的整合和挖掘,揭示传统技术方式难以展现的关联关系,还可以预警风险,及时切断风险链。例如:·针对堵车现象,实时采集车流数据,自动控制信号灯,让堵车能有所缓解。1.针对城乡结合部“治安盲区”,采集人口流动信息,分析出潜在风险,警力针对性地科学调配;2.针对保险理赔,通过社会信息搜集分析系统,上海等地正积极探索商业保险公司参与社会治理,将保险事务由“事后理赔”转为“事先风险防范”;3.针对聚集疏导,通过关键词搜索技术、热力图技术、电子巡逻技术等,探索预测人群聚集苗头和动向,人员过密时及时提示预警,适时分流人群;4.针对犯罪热点,集成公安专业数据,实时掌握犯罪轨迹、预判犯罪热点,提高防范打击犯罪的水平;5.针对安全生产,工程建设特别容易出事,建立工程建设监管和信用平台,以大数据为依托,“全程留痕”,让监管“无死角”。
车辆大数据实际使用中面临的问题
大数据的特征是大量性(规模超大、不断攀升)、高速性(高速产生、处理高效)、多样性(种类多样、来源多样)、低密性(有用数据提纯)。海量数据给常规技术(获取存储管理、处理传递共享、关联聚类分析)带来了众多挑战——虽然数据很多,但是有用的数据只有34%,好用的数据仅有7%,被分析的数据更是少到只有1%。如何在海量的数据中提取出有价值的信息需要多学科多技术的研究。当前的特点是大数据、小模型、小定律交叉,即使是同一类问题,每个系统也都不一样,所以模型和程序要针对数据设计。结构化数据通过数据库或者数据仓库解决,半结构化数据使用网页和搜索引擎等技术解决,非结构化数据使用深度学习、网络交互和群体智能解决。
干警在实战使用中,最主要的操作应用是查询车牌信息和其他过车记录以便掌握线索。面对动辄几十亿、上百亿甚至千亿级别的海量过车数据的存储和查询压力,如何进行可靠存储和高效应用?传统的普通关系型数据库解决方案和技术手段存在检索难、并发难、挖掘难、扩容难、应用难等一系列问题,速度慢、准确性差,需要投入大量的精力和资源进行技术升级改造。因此,及时准确获取各类相关数据并构建大数据处理模型是建设平安城市大数据中心的前提,而这一难题目前正逐步通过先进的大数据技术进行解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20