
九次方大数据让数据富有生命力
浩瀚复杂的数据被挖掘、分析、重新解构之后,需要一种更具规律性更直接的呈现方式,让大数据的分析与结论更易于感知和传达——数据可视化承载了这一使命,它让数据更富有生命力。
大数据时代,数据已经渗透到各行各业和政府职能领域。对政府来说,大数据就像是“无价之宝”。政府各部门和下属单位都有一套各系统内的数据资源,涉及到经济、气象、金融、交通等多个方面,约占国内数据总量的80%。这些数据经过综合分析利用,可以用来指导农业生产、金融行业风控、智慧城市建设等,改善和提高公共服务水平。
那么,企业应该如何从大数据中“掘金”?政府该如何利用大数据改善公共服务?如今数据行业发展如火如荼,但随着大数据分析技术的蓬勃发展所带来的问题是——如何直观地呈现大数据分析结果?如何通过可视化手段辅助数据分析和决策?
传统的数据展现方式大多是Excel中的统计图表和一些透视表格,不仅形式单一,而且在传达和感知上不易于使人理解和发现重要结论,没有形成一种有效的展现体系,使数据的展现形式相对死板、陈旧,无法凸显出大数据系统与传统信息化系统的区别,在视觉传达、暴露问题、支持决策等方面存在各种不足。
九次方大数据以数据本质和人类感知为切入点,重新设计大数据分析结果应有的呈现形式,采用实时数据刷新与丰富的多维钻取交互技术,标新立异,赋予数据呈现新的生命力。
灵动性是指将系统的实时数据变化、计算过程在界面上以人类易于接受的方式进行表达的特征。九次方大数据在大数据应用中引入时序刷新技术,使部分数据随着时间频繁更新结果,以时序方式动态呈现,使整个数据系统“动”了起来,像是活的生命,给人耳目一新的感觉。
下面是模拟全球网络实时攻击的场景,其读取实时数据接口,不断展示当前网络攻击发生时的源头、目标地理信息以及攻击内容。
生命力还体现在系统的多维交互性。大数据系统的多维交互性体现在哪些方面呢?
随着移动互联网、物联网、云计算等新一代信息技术的迅猛发展,大数据已发展为海量的、多维的、异构的数据形式,数据孤岛已经越来越少。在此机遇下,用户更关心这些具备丰富内容的数据联合在一起,可以为社会发展、经济运行、民生服务等各方面产生什么样的变革力?是否可成为社会生产的新要素、产业发展的新引擎和治理现代化的新动力?
当然,以上这些问题这也充分暴露了传统信息化系统的弱点——查询导向,用户需明确知道问题所在并输入特定的条件进行检索,信息化系统才会依据用户的输入检索出结果。
九次方率先发现了这一重要的用户痛点,并在产品设计、分析建模、人机交互层面做了大量的工作,通过掌握整体设计中存在的多维数据关联性,设计出具备联动、钻取、联想功能的交互方式,使得用户可轻松地展开所关注的内容,从而在交互层面对用户提供可视化分析辅助功能。
新型的数据可视化产品必须满足爆发的大数据需求,快速收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。九次方大数据的可视化系统以灵动性和多维交互性维手段来焕发数据的生命力,立体式画面、实时动态的数据呈现形式,让数据呈现动态生命力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15