
P2P网贷平台想搭大数据快车,这三个问题至关重要
由于互联网思维的影响,互金圈一直都有追逐“潮流”的习惯。随着互联网渗透率到达高位,流量红利也逐渐消失,大数据概念便开始在圈内被热炒。由此也便引发了各种公司与大数据搭界的情况,以此挖掘大数据的价值潜力。
也正是由于大数据有很大的商业价值,很多的公司才会进行挖掘,而这些公司在大数据方面有三个共性:
首先,开创了一个大数据获取的场景,或者说其商业模式本身就有“众包”优势;【众包:一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定的(而且通常是大型的)大众网络的做法。】
其次,拥有通过海量数据“获取真相”的能力。在突破建立众包场景或渠道的门槛后,大家同样拥有了海量元数据,此时可以通过定量模型或经验模型从中提取“真相”;
再者,将得到的“真相”变现。通过资产配置或其他方式,在执行层面由“真相”替代原有的推演,让大数据解决了“做什么”、“怎么做”的问题,而没有纠缠在“为什么”的层面。
所以说,大数据还是有很多的优势的,可以置换掉时间和逻辑都比较长且复杂的过程。那么P2P网贷平台想要玩大数据靠谱吗?P2P网贷平台要想进入大数据领域,要先仔细考虑这三个问题:
第一,大数据“变现”前,有没有做好定位?
如果用大数据做运营,你有没有足够维度的投资人行为偏好数据?有没有在水平层面上做交叉分析?如果用大数据做风控,你的数据维度与你的资产类型是否匹配?或者用大数据来做产品,或大数据本身是产品,不同的位置需要考虑不同的打法。初步定为之后要深入下去围绕这个核心做一系列的工作。
第二,有没有找到或者成为一个合适的数据众包场景?
在P2P网贷平台,第一类通过合作方式获得数据的,不将大数据本身作为产品变现。在众包的选择上是否做到的准确且迅速?选择小贷公司或者地方征信公司作为众包的P2P平台,有没有做地域上,行业上的交叉分析?这些数据本身是静态的还是动态的,能不能在将来支撑你的风控模型变量地调整?再比如第二类,自己作为众包入口,收集多维度投资人数据,再运用到运营或其他层面,或者作为数据产品变现的平台。也至少需要考虑行业内数据的交叉分析,不然得出的结论并没有太大意义。
第三,在大规模执行从大数据中得到的“真相”之前,有没有充分考虑可能造成数据表现异常的情况?是否进行过试错?
大数据和模型的优势不是替你做决策,这些只是辅助做决策的工具。要抓住这个工具,用它去做事情,而不是让这个工具替你做事情,依靠但不依赖才是正解。
比如,某P2P平台使用10月份的投资人行为数据分析,结果发现85-90后投资人当月投资金额有显著下滑,得出结论下个月要针对这个年龄区间的投资人进行集中推广活动。在这个决策过程中,平台完全没有对数据可靠性进行判断,在面对时间区间较短,量大的数据时,要考率会造成大范围影响的事件或者活动。
所以说,大数据解决的是相关性问题,但不回答因果关系,所以只能是优化、简化决策过程。在大数据概念“当红”之际,P2P网贷平台想要抢占市场,确立市场认知是很重要,应当减少表面现象,注重钻研,让大数据帮助平台成长才是真正的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29