
P2P网贷平台想搭大数据快车,这三个问题至关重要
由于互联网思维的影响,互金圈一直都有追逐“潮流”的习惯。随着互联网渗透率到达高位,流量红利也逐渐消失,大数据概念便开始在圈内被热炒。由此也便引发了各种公司与大数据搭界的情况,以此挖掘大数据的价值潜力。
也正是由于大数据有很大的商业价值,很多的公司才会进行挖掘,而这些公司在大数据方面有三个共性:
首先,开创了一个大数据获取的场景,或者说其商业模式本身就有“众包”优势;【众包:一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定的(而且通常是大型的)大众网络的做法。】
其次,拥有通过海量数据“获取真相”的能力。在突破建立众包场景或渠道的门槛后,大家同样拥有了海量元数据,此时可以通过定量模型或经验模型从中提取“真相”;
再者,将得到的“真相”变现。通过资产配置或其他方式,在执行层面由“真相”替代原有的推演,让大数据解决了“做什么”、“怎么做”的问题,而没有纠缠在“为什么”的层面。
所以说,大数据还是有很多的优势的,可以置换掉时间和逻辑都比较长且复杂的过程。那么P2P网贷平台想要玩大数据靠谱吗?P2P网贷平台要想进入大数据领域,要先仔细考虑这三个问题:
第一,大数据“变现”前,有没有做好定位?
如果用大数据做运营,你有没有足够维度的投资人行为偏好数据?有没有在水平层面上做交叉分析?如果用大数据做风控,你的数据维度与你的资产类型是否匹配?或者用大数据来做产品,或大数据本身是产品,不同的位置需要考虑不同的打法。初步定为之后要深入下去围绕这个核心做一系列的工作。
第二,有没有找到或者成为一个合适的数据众包场景?
在P2P网贷平台,第一类通过合作方式获得数据的,不将大数据本身作为产品变现。在众包的选择上是否做到的准确且迅速?选择小贷公司或者地方征信公司作为众包的P2P平台,有没有做地域上,行业上的交叉分析?这些数据本身是静态的还是动态的,能不能在将来支撑你的风控模型变量地调整?再比如第二类,自己作为众包入口,收集多维度投资人数据,再运用到运营或其他层面,或者作为数据产品变现的平台。也至少需要考虑行业内数据的交叉分析,不然得出的结论并没有太大意义。
第三,在大规模执行从大数据中得到的“真相”之前,有没有充分考虑可能造成数据表现异常的情况?是否进行过试错?
大数据和模型的优势不是替你做决策,这些只是辅助做决策的工具。要抓住这个工具,用它去做事情,而不是让这个工具替你做事情,依靠但不依赖才是正解。
比如,某P2P平台使用10月份的投资人行为数据分析,结果发现85-90后投资人当月投资金额有显著下滑,得出结论下个月要针对这个年龄区间的投资人进行集中推广活动。在这个决策过程中,平台完全没有对数据可靠性进行判断,在面对时间区间较短,量大的数据时,要考率会造成大范围影响的事件或者活动。
所以说,大数据解决的是相关性问题,但不回答因果关系,所以只能是优化、简化决策过程。在大数据概念“当红”之际,P2P网贷平台想要抢占市场,确立市场认知是很重要,应当减少表面现象,注重钻研,让大数据帮助平台成长才是真正的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15