京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本次分析的数据源来自链家网。链家网中有”二手房-成交房源”这个板块,可以查看到所有通过链家成交的二手房的信息,其中最值得称赞的是成交价格的真实性。买过房子的朋友都清楚,房子的实际成交价格和在房管局信息中心的网签价格是不一样的,处于避税的考虑,一般来说网签价格都会比真实的成交价格低,因为在房屋买卖过程中的各种税费都是以网签价格来确定的。因此,一般政府部门出具的关于房价的报告,其实是不可信的。
所以分析的第一步,就是从链家网获取想要的数据。这里我利用Python做了一个简单的爬虫,获取了从2015年7月到2016年5月,在北苑地区通过链家成交的约2500套二手房成交的数据。经过手工的数据清洗,获取到的数据大概是这个样子:
其中,链家的数据在2015年11月之后精确到了成交日期,但是为了和2015年11月之前的数据粒度统一,我都统一成了成交月份.
链家可以查询到的最晚成交是两周前的数据,因此2016年5月数据在爬取时刻只有5月3日之前,所以在之后的分析中5月数据是不可用的
本次分析不是要解决什么问题,因此分析以数据探索为主,分成两大块:
3.1 整体涨幅显著
从整体来看,北苑地区房价在近10个月内经历了一个显著的涨幅:2016年4月相对2015年7月增幅达31%;2016年4月环比3月增长12%。
对照5月18日国家统计局发布的4月份70个大中城市住宅价格变动情况,发现政府的数据似乎温和了很多……信谁大家可以自己判断……
3.2 小区越高端、越新,涨幅越大;70年住宅涨幅大于50年商住两用
北苑地区楼盘有50余个,我选取了10个小区,分别看最近一段时间的价格趋势,如下图:
从图上可以清晰的看出分成了三快
1) 第一块由华贸城、润泽公馆、世华泊郡组成,目测涨幅在40%左右。这三个小区都是2012年之后建设的,高端大气,整体价格高,但是涨幅也最高
2) 第二块由北苑家园各种园组成,目测涨幅在30%左右。这些园大部分建筑年代在1998-2005之间,只有望春园是2008年,因此价格也是望春园要明显高于其他园。这些相对平民的小区涨幅就不如高端小区
3) 第三块是最下面的旭辉奥都,目测涨幅在25%左右。旭辉奥都是2008年建成的,不过是50年产权的商住两用,不限购,但是现在也可以落户、也是民水民电,但是价格确实相对较低,而且涨幅也没有其他小区快……难道只是因为50年的原因吗?
3.3 一居及四居户型涨幅最大
从下图可以看出,一居及四居的涨幅最大,猜测原因:一是此类户型数量较少,供给相对稀缺;二是目前国内一线城市贫富差距极大:
3.4 楼层对于涨幅的影响在各小区情况不同
我们从下图中可以看到,从整体上讲,低楼层的房子涨幅更高一些,但是具体到某一个小区,情况各不相同:
4.1 高端楼盘两居单价最高,主要是因为面积较小
下图统计了从2015.7到2016.4,按照不同户型的成交均价情况:
对于华贸城、润泽公馆、世华泊郡三个相对高档的小区,两居的单价都是最贵的。而其他小区没有一致的特征,但是超过一半的两居是最便宜的。
下图统计了两居的成交面积,可以发现三个高端楼盘的两居面积较小,平均面积在90平方米以下(实际情况是这三个小区最大的两居不超过100平米)。而其他小区的两居面积都较大。
所以,猜测购房者的普遍心态可能是这样:想购买两居的人都偏向新小区的小两居。
4.2 面积越大的房子单价会越低?看来不一定!
通常来说,面积越小的房子总价低,单价高(这一点尤其在学区房上体现的很明显),面积越大的房子总价高,单价低。但是我分析了几个小区的面积与成交价格的关系,发现没有统一的规律:
4.3 朝向貌似已经不重要了
我们常理认为,南向的房子应该价格较贵、增幅较大,但是我尝试对于朝向进行分析时,发现数据一片混沌,根本得不出有价值的结论。从整体和单个小区来看,不存在南向一定贵,东西一定便宜的现象,可见朝向在现在这个时代,重要性已经大不如前了
其实在这个简单的研究中,我只研究了房子自身的属性数据。但是房价所受到的影响太多了。除了房子本身的这些属性的分析,还有交通、配套设施、停车位、学区房、是不是有核电站在周围等等……
北苑地区有5号和13号两条地铁经过,交通相对便利,社区成熟,而且我认为支撑此地区房价最重要的因素,是望京已经成为北京一个新的CBD,原本就有爱立信、诺基亚、联想、美团等高科技企业,随着阿里巴巴、Uber这两个巨头的入驻,带来越来越多的高收入精英人才,望京地区的房价已经水长船高。作为紧靠大望京的北苑地区,会成为挤出效应的收益区域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22