
如何透过数据分析,结构化地解决问题
麦肯锡的三条核心工作原则提出:“以假设为前提”“以事实为依据”,并通过“完全的结构化”方法进行验证。在这个解决问题的闭环中,我们可以通过验证,判断假设的问题架构是否合理,是否与环境相吻合。如不吻合,我们便要调整假设,并重新验证,直到看清问题本质为止。
分析数据 建立假设
针对行业、企业数据,以分析框架为基础,思考之后整理出来的资料,就是我们所说的“假设”。如果在假设中,某行业成长趋势处于发展的下行通道,应考虑适当减少该行业的新增投资。而“行业下行通道”其实也是一个假设,如果想采取减少投资的策略,就必须验证假设的真实性,这需要我们更进一步地搜集、分析证据。
比如,某电力工程公司面临的问题是市场占有率太低,因此希望得以提升。很多员工认为:市场占有率低的原因是品牌知名度不够高或价格太高,导致项目难以获取。可事实真的是这样吗?
通过行业分析,我们发现该工程公司的业务主要以项目投标的形式获得。因此,市场占有率可以通过参与投标率和中标率相乘获得,即市场占有率=参与投标率*中标率。
如果想提升市场占有率,可从提升参与投标率和中标率两个方向努力。目前,该公司的参与投标率为50%,中标率为10%,因此市场占有率为5%,看到上面的数字,相信大家从直觉上会认为需要提升中标率是解决问题的关键之一,即解决此问题时所建立的假设。
直觉判断只是依据两个数字的绝对值以及边际效益的概念,而更重要的是看数字相对值。这个问题中的相对值是指与行业平均水平做比较,10%的中标率虽然很低,但如果行业的平均值是6%,这对于公司来说,想要提升这一数值便存在难度。由此可见,行业分析和比较的过程,也就是搜集证据验证假设的过程。
搜集证据 明确目标
搜集证据是为了验证假设的真实性,所以在搜集证据时,绝不能简单地随波逐流,要有的放矢。
搜集证据的第一步是明确目标。一旦开始一项工作,首先要清楚地知道其目的和背景,理解整体状况,从而提高效率,否则就会犯方向性错误。另外,需要明确信息的来源,这样才能提高工作效率。证据搜集的具体方法包括:访谈、问卷、调用企业内部系统数据、查看地区经济数据及网络搜索。
在上一段提到的案例中,某电力工程公司首先要获得全行业的数据,如行业参与投标率以及中标率的平均水平,由此推算出哪一项具有提升的空间。同时,对公司内部的数据进行调研,找到每一个项目组的中标率、中标项目特点及中标优势,包含价格优势、关系优势、技术优势、服务优势、品牌优势。最后,汇总每一个地区与每一个项目组的数据即可。
分析证据的两种方法:分类与图表化
通常情境下,我们可以通过分类对比和证据图表化两种方式来更有效地分析证据。
分类对比 分析证据
最近,网上有一篇文章提到:女性的基因里隐藏着分析大数据的潜力。实际上,女性未必会计算大数据,但都是证据分析的高手,擅长长期追踪一些看似不重要的数据,形成自己的“基准线”和“模式”,一旦这些数据点的模式显示出不同于她所熟悉的基准线,便表示情况反常。
这个能力看似很神奇,其实只要遵循一定的分析方法就可以做到。最初,女性会搜集很多看似毫无关联的数据,将其分类后找到规律,专业地说即通过统计,找到分类数据中的基准,再对比数据与基准的不同点得到结论。
在电力工程公司的案例中,我们将公司内部所有的数据进行对比,如果发现各类项目并没有明显的差异,但有些项目组的中标率很高(比如30%),就表明这并不是公司总体技术和品牌的问题,也不是项目选择的问题。但如果只有一个项目组中标率高,就有可能是特例,需再分析该项目组的价格优势和关系优势。分析数据之后,还需要分别对中标率高和中标率不太理想的项目组进行访谈,找到中标的核心优势及共通方法。通过对比,验证出中标的核心优势和共通方法在怎样的情况下更容易被推广。
在这个项目中,我们通过分析找到了问题的关键:投标书中,技术方案的描述以及讲标中的呈现能力是决定项目成败的核心。事实证明,加强对这两方面的培训便能取得更好的成效。
证据图表化 助力问题分析
人们往往会对通过视觉获取的信息产生记忆,图表恰好能在短时间内传播大量的信息,使呈现结果一目了然。证据图表化的目的并不仅仅是提高理解度,其最终目的是解决问题。绘制图表有助于促进分析,理解所发生的情况,从而找出本质问题。
在进行证据分析时,销售额、销售成本价、边际利润、利润这些种类繁多的数字常常会让人摸不着头脑,而实现了图表化后,便可一目了然,让人过目不忘。
年份 | 销售额(亿元) | 完成率 |
2015 | 101 | 88% |
2014 | 105 | 98% |
2013 | 102 | 102% |
2012 | 98 | 97% |
2011 | 95 | 94% |
2010 | 91 | 100% |
证据分析时的图表化
搭建金字塔 实现结构化验证
无论是用五分钟阐述问题,还是细致论述问题的推导过程,每种方法背后的依据都是金字塔结构,在金字塔的每一层级中,都呈现出独立的结论和主张。完成问题金字塔结构搭建时,遵循以下5个步骤会更有效率。
第一步 收集证据并分析之后,将推导出的结论与主张列举在一张纸上。
第二步 将纸上的结论、主张根据主题的类似性做出分类。
第三步 将同一类型的结论、主张按顺序排列。
第四步 通过因果关系分析,找出上下层级,搭建金字塔。
同属一类的结论之间通常存在因果关系,在整理时,首先需找到因果关系对应,再将作为原因的结论放在下面,作为结果的结论放在上面,以此搭建金字塔的纵向结构。然后,把在同一层级中的结论按逻辑顺序进行排列,例如:某些项目属并列关系,则根据时间(过去、现在、未来)、数字大小(营业额大小等)、地区(从北到南)、重要性(战略、流程)等排序,进行横向结构展开。
第五步 重复以上步骤,直到所有的结论都出现在金字塔结构中为止。
在按此步骤操作之后,需要进行二次确认,可运用自上而下提问回答的方式进行补充,判断思考的维度是否完整。同时,在得出的因果关联中,也要通过自下而上归纳总结的方法判断结论是否具备充足的理由,且该理由是否可以归纳产生新的结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16