京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据:一篇文章看懂NoSQL数据库
如果你关注大数据科技动向,可能听说过一个叫NoSQL数据库的名词,这可能让人有些云里雾里。其实我们处在一个激动人心的技术更迭时代,以甲骨文为代表的SQL数据库已经称霸了企业市场30年,而近年来的NoSQL则是强有力的更新换代的竞争者。这篇文章就通过问答的方式来给小白解释NoSQL数据库系统是什么,无论你的技术背景如何都能看得懂。对于数据分析从业人员来说,了解数据库的趋势可以让你的职业生涯如虎添翼;而对于工程师来说,了解新的基础系统更是必不可少的行业知识。
几个基本问题
小白问:数据库是什么东西,可以吃吗?
答:……不可以。数据库呢,就是存储数据的地方,就像冰箱是存储食物的地方一样。
小白问:诶?我的数据就存储在自己电脑里面的excel表里里,还要数据库干嘛?
答:自己的数据的确很方便,但是对于企业来说就不一样了。一个公司里面可能有成千上万的Excel表格,还在不同的电脑上,而他们的员工和客户需要实时看到企业给他们提供的所有数据,这种文件管理的方法就很麻烦,总不能每分钟都把一个新的巨大无比的excel文件发给所有客户呀!而且数据库更有用的是进行查询,企业会给内部或者客户开发不同的应用,而这些应用需要数据的时候可以直接实用数据库的查询语句快速得到结果。
小白问:哦,那是说所有的人都直接在这个系统上查数据和改数据吗?
答:是的,数据库也会帮助你处理“并发”,也就是如果多个人同时在改数据的情况。比如你在支付宝给小灰转账,而小灰这个时候又偏偏刚好在给你转账,这时候数据库系统就要保证你们两个人最后余额都是正确的,并且在你们进行交易的时候别人如果同时查询你们俩人的余额都会得到精确的结果。在一个企业系统中,一秒钟可能有成千上万个这样的查询和改动发生呢。
小白问:那SQL又是什么鬼?
答:SQL是一种可以查询关系型数据库的语言,关系型数据库也叫SQL数据库。
所谓关系型数据库就是数据是以表格的形式进行存储的,就和你电脑上的Excel表一样,数据是一行一列整整齐齐的躺着的。表格之间有着这样或那样的关系,可以通过某信息连接在一起 。想查这些表格里的任何数据的程序员们就可以把他们想要的数据形式转化成SQL语句然后发给数据库,得到数据结果。比如你可以有一个食物管理的数据库,里面有两个表(食物表和主人表),长成下面的这个样子:
食物编号食物名称数量 喜爱程度主人编号
1 猕猴桃 4 53
2 菠菜 10 2 2
3巧克力 99 1001
主人编号主人姓名 主人性别
1小白 女
2小黑 男
3小灰 男
我们可以写一句简单的SQL语句直接调出所有男主人拥有的食品及数量。
SELECT 主人姓名,食物名称,数量
FROM 食物表,主人表
WHERE 食物表.主人编号=主人表.主人编号 AND 主人性别=‘男’
=>
主人姓名食物名称数量
小黑菠菜10
小灰猕猴桃 4
深入聊聊
小白问:哦,那NoSQL到底有什么过人之处呢?
答:因为近年来企业要处理的数据越来越多,越来越复杂,就出现了两个之前关系型数据库解决不了的问题:快速增长的数据规模和日渐复杂的数据模型。
第一个问题就是数据越来越多,公司以前买的装关系型数据库的那台电脑放不下了,那这个时候就有两种选择:
一种就是直接去买一台更大空间的计算机取代现有的机器。这个方法是有限制的,因为这种机器的价格一般非常昂贵,而且这个空间总是有一个上限的。
另外一种选择就是再买一台机器,然后把新的数据放到新机器里的另外一个SQL数据库里面,这个过程也叫“分片”(sharding)。 这个时候程序员要开始杯具的加班了。因为这个转换的过程非常容易出问题,而且会给使用数据库的应用增加很多的复杂度。比如我们之前的例子,在查询食品和数量的语句的时候我们要将同样的语句同时发给两个服务器,然后把最后的结果综合起来,给应用的开发增加了很多不必要的负担。分片还有很多别的缺点我就不一一赘述了。
而NoSQL数据库的服务器本身就支持很多个机器存储数据进行分布式查询,这样当空间不够用的时候就直接去扛一台新的机器回来连接到已有的计算机集群上装好数据库即可,程序员可以回家睡个好觉啦。
小白问:明白了,那另外一个关系型数据库没有解决的问题呢?
答:另外的一个问题就是把数据放到SQL数据之前要进行数据建模,也就是要考虑好每一个表里面每一列都代表什么,不同的表格之间要怎样相互关联起来。这对很多公司来说是一件非常耗费时间和精力的事情,因为他们的数据源的种类太多了。而且在数据进入数据库之后,如果在表中增加新的一列(比如想把食物的种类加进第一个表中)或者是要改变某一列的特性的话,对于系统来说是非常困难的,因为表中的数据已经一行行的存好了。
而NoSQL数据库就减轻了数据建模的负担,比如上面的表里面的一行可以变成下面JSON文档的样子:
{
食物名称:猕猴桃,
数量:4,
喜爱程度:5,
主人:{
姓名:小灰,
性别:男
}
}
这样很方便的可以修改数据模型的样子,而且从源数据不需要怎么改就可以放入数据库。目前用有一个行业叫做ETL,就是专门做数据形状转化的:他们将不同的源数据打磨到想要的表格的模子里,然后放入关系型数据库。这个行业价值好几十亿美元呢,很疯狂吧?用了NoSQL,公司可以节省好多时间和人民币呢。
答:NoSQL其实有很多不同的种类的,适用在不同的情况中并且分别有不同的存储方法。JSON是文档类NoSQL的典型格式,我们平时使用的word和pdf文件都可以很容易放入文档型数据库进行查询。而其他种类的NoSQL也可能是用图或者哈希表的模型来存储数据。如果你的数据存储的是一个社交网络类型的应用,那么对你来说用一个基于图的数据库可能更加合适,因为你关心的社交网络场景中的问题都可以得到比较快速的回答。
答:哪有,NoSql其实是Not Only SQL,就是不仅仅是SQL,有一些NoSQL数据库还支持直接用SQL来做查询呢。两者的区别主要是我上面提到的两点: 1.对数据建模的要求不同:NoSQL的建模程序比较简单灵活;2.对数据增加的处理方式不同:使用NoSQL可以直接进行分布式处理。在数据规模增长需要增加新的机器的时候,不需要程序员对使用数据库的应用进行代码进行改动,直接在数据库集群中增加一台新的计算机就可以啦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27