登录
首页精彩阅读使用Storm实现实时大数据分析
使用Storm实现实时大数据分析
2016-04-17
收藏

使用Storm实现实时大数据分析


简单和明了,Storm让数据分析变得轻松加愉快。

当今世界,公司的日常运营经常会生成TB级别的数据。数据来源囊括了互联网装置可以捕获的任何类型数据,网站、社交媒体、交易型商业数据以及其它商业环境中创建的数据。考虑到数据的生成量,实时处理成为了许多机构需要面对的首要挑战。我们经常用的一个非常有效的开源实时计算工具就是Storm —— Twitter开发,通常被比作“实时的Hadoop”。然而Storm远比Hadoop来的简单,因为用它处理大数据不会带来新老技术的交替。

Shruthi Kumar、Siddharth Patankar共同效力于Infosys,分别从事技术分析和研发工作。本文详述了Storm的使用方法,例子中的项目名称为“超速报警系统(Speeding Alert System)”。我们想实现的功能是:实时分析过往车辆的数据,一旦车辆数据超过预设的临界值 —— 便触发一个trigger并把相关的数据存入数据库。

Storm

对比Hadoop的批处理,Storm是个实时的、分布式以及具备高容错的计算系统。同Hadoop一样Storm也可以处理大批量的数据,然而Storm在保证高可靠性的前提下还可以让处理进行的更加实时;也就是说,所有的信息都会被处理。Storm同样还具备容错和分布计算这些特性,这就让Storm可以扩展到不同的机器上进行大批量的数据处理。他同样还有以下的这些特性:

易于扩展。对于扩展,你只需要添加机器和改变对应的topology(拓扑)设置。Storm使用Hadoop Zookeeper进行集群协调,这样可以充分的保证大型集群的良好运行。

每条信息的处理都可以得到保证。

Storm集群管理简易。

Storm的容错机能:一旦topology递交,Storm会一直运行它直到topology被废除或者被关闭。而在执行中出现错误时,也会由Storm重新分配任务。

尽管通常使用Java,Storm中的topology可以用任何语言设计。

当然为了更好的理解文章,你首先需要安装和设置Storm。需要通过以下几个简单的步骤:

从Storm官方下载Storm安装文件

将bin/directory解压到你的PATH上,并保证bin/storm脚本是可执行的。

Storm组件

Storm集群主要由一个主节点和一群工作节点(worker node)组成,通过 Zookeeper进行协调。

主节点:

主节点通常运行一个后台程序 —— Nimbus,用于响应分布在集群中的节点,分配任务和监测故障。这个很类似于Hadoop中的Job Tracker。

工作节点:

工作节点同样会运行一个后台程序 —— Supervisor,用于收听工作指派并基于要求运行工作进程。每个工作节点都是topology中一个子集的实现。而Nimbus和Supervisor之间的协调则通过Zookeeper系统或者集群。

Zookeeper

Zookeeper是完成Supervisor和Nimbus之间协调的服务。而应用程序实现实时的逻辑则被封装进Storm中的“topology”。topology则是一组由Spouts(数据源)和Bolts(数据操作)通过Stream Groupings进行连接的图。下面对出现的术语进行更深刻的解析。

Spout:

简而言之,Spout从来源处读取数据并放入topology。Spout分成可靠和不可靠两种;当Storm接收失败时,可靠的Spout会对tuple(元组,数据项组成的列表)进行重发;而不可靠的Spout不会考虑接收成功与否只发射一次。而Spout中最主要的方法就是nextTuple(),该方法会发射一个新的tuple到topology,如果没有新tuple发射则会简单的返回。

Bolt:

Topology中所有的处理都由Bolt完成。Bolt可以完成任何事,比如:连接的过滤、聚合、访问文件/数据库、等等。Bolt从Spout中接收数据并进行处理,如果遇到复杂流的处理也可能将tuple发送给另一个Bolt进行处理。而Bolt中最重要的方法是execute(),以新的tuple作为参数接收。不管是Spout还是Bolt,如果将tuple发射成多个流,这些流都可以通过declareStream()来声明。

Stream Groupings:

Stream Grouping定义了一个流在Bolt任务间该如何被切分。这里有Storm提供的6个Stream Grouping类型:

1. 随机分组(Shuffle grouping):随机分发tuple到Bolt的任务,保证每个任务获得相等数量的tuple。

2. 字段分组(Fields grouping):根据指定字段分割数据流,并分组。例如,根据“user-id”字段,相同“user-id”的元组总是分发到同一个任务,不同“user-id”的元组可能分发到不同的任务。

3. 全部分组(All grouping):tuple被复制到bolt的所有任务。这种类型需要谨慎使用。

4. 全局分组(Global grouping):全部流都分配到bolt的同一个任务。明确地说,是分配给ID最小的那个task。

5. 无分组(None grouping):你不需要关心流是如何分组。目前,无分组等效于随机分组。但最终,Storm将把无分组的Bolts放到Bolts或Spouts订阅它们的同一线程去执行(如果可能)。

6. 直接分组(Direct grouping):这是一个特别的分组类型。元组生产者决定tuple由哪个元组处理者任务接收。

当然还可以实现CustomStreamGroupimg接口来定制自己需要的分组。

项目实施

当下情况我们需要给Spout和Bolt设计一种能够处理大量数据(日志文件)的topology,当一个特定数据值超过预设的临界值时促发警报。使用Storm的topology,逐行读入日志文件并且监视输入数据。在Storm组件方面,Spout负责读入输入数据。它不仅从现有的文件中读入数据,同时还监视着新文件。文件一旦被修改Spout会读入新的版本并且覆盖之前的tuple(可以被Bolt读入的格式),将tuple发射给Bolt进行临界分析,这样就可以发现所有可能超临界的记录。

下一节将对用例进行详细介绍。

临界分析

这一节,将主要聚焦于临界值的两种分析类型:瞬间临界(instant thershold)和时间序列临界(time series threshold)。

瞬间临界值监测:一个字段的值在那个瞬间超过了预设的临界值,如果条件符合的话则触发一个trigger。举个例子当车辆超越80公里每小时,则触发trigger。

时间序列临界监测:字段的值在一个给定的时间段内超过了预设的临界值,如果条件符合则触发一个触发器。比如:在5分钟类,时速超过80KM两次及以上的车辆。

Listing One显示了我们将使用的一个类型日志,其中包含的车辆数据信息有:车牌号、车辆行驶的速度以及数据获取的位置。

AB 12360North city

BC 12370South city

CD 23440South city

DE 12340East city

EF 12390South city

GH 12350West city

 

这里将创建一个对应的XML文件,这将包含引入数据的模式。这个XML将用于日志文件的解析。XML的设计模式和对应的说明请见下表。

XML文件和日志文件都存放在Spout可以随时监测的目录下,用以关注文件的实时更新。而这个用例中的topology请见下图。

Figure 1:Storm中建立的topology,用以实现数据实时处理

如图所示:FilelistenerSpout接收输入日志并进行逐行的读入,接着将数据发射给ThresoldCalculatorBolt进行更深一步的临界值处理。一旦处理完成,被计算行的数据将发送给DBWriterBolt,然后由DBWriterBolt存入给数据库。下面将对这个过程的实现进行详细的解析。

Spout的实现

Spout以日志文件和XML描述文件作为接收对象。XML文件包含了与日志一致的设计模式。不妨设想一下一个示例日志文件,包含了车辆的车牌号、行驶速度、以及数据的捕获位置。(看下图)

Figure2:数据从日志文件到Spout的流程图

Listing Two显示了tuple对应的XML,其中指定了字段、将日志文件切割成字段的定界符以及字段的类型。XML文件以及数据都被保存到Spout指定的路径。

Listing Two:用以描述日志文件的XML文件。

 

<

TUPLEINFO

>

 

<

FIELDLIST

>

 

<

FIELD

>

 

<

COLUMNNAME

>

vehicle_number

 

COLUMNNAME

>

 

<

COLUMNTYPE

>

string

 

COLUMNTYPE

>

 

 

FIELD

>

 

 

<

FIELD

>

 

<

COLUMNNAME

>

speed

 

COLUMNNAME

>

 

<

COLUMNTYPE

>

int

 

COLUMNTYPE

>

 

 

FIELD

>

 

 

<

FIELD

>

 

<

COLUMNNAME

>

location

 

COLUMNNAME

>

 

<

COLUMNTYPE

>

string

 

COLUMNTYPE

>

 

 

FIELD

>

 

 

FIELDLIST

>

 

<

DELIMITER

>

,

 

DELIMITER

>

 

 

TUPLEINFO

>

 

通过构造函数及它的参数Directory、PathSpout和TupleInfo对象创建Spout对象。TupleInfo储存了日志文件的字段、定界符、字段的类型这些很必要的信息。这个对象通过XSTream序列化XML时建立。

Spout的实现步骤:

对文件的改变进行分开的监听,并监视目录下有无新日志文件添加。

在数据得到了字段的说明后,将其转换成tuple。

声明Spout和Bolt之间的分组,并决定tuple发送给Bolt的途径。

Spout的具体编码在Listing Three中显示。

Listing Three:Spout中open、nextTuple和delcareOutputFields方法的逻辑。

 

public void open( Map conf, TopologyContext context,SpoutOutputCollector collector )

{

_collector = collector;

try

{

fileReader = new BufferedReader(new FileReader(new File(file)));

}

catch (FileNotFoundException e)

{

System.exit(1);

}

}

 

public void nextTuple()

{

protected void ListenFile(File file)

{

Utils.sleep(2000);

RandomAccessFile access = null;

String line = null;

try

{

while ((line = access.readLine()) != null)

{

if (line !=null)

{

String[] fields=null;

if (tupleInfo.getDelimiter().equals("|")) fields = line.split("\\"+tupleInfo.getDelimiter());

else

fields = line.split (tupleInfo.getDelimiter());

if (tupleInfo.getFieldList().size() == fields.length) _collector.emit(new Values(fields));

}

}

}

catch (IOException ex){ }

}

}

 

public void declareOutputFields(OutputFieldsDeclarer declarer)

{

String[] fieldsArr = new String [tupleInfo.getFieldList().size()];

for(int i=0; i

{

fieldsArr[i] = tupleInfo.getFieldList().get(i).getColumnName();

}

declarer.declare(new Fields(fieldsArr));

}

declareOutputFileds()决定了tuple发射的格式,这样的话Bolt就可以用类似的方法将tuple译码。Spout持续对日志文件的数据的变更进行监听,一旦有添加Spout就会进行读入并且发送给Bolt进行处理。

Bolt的实现

Spout的输出结果将给予Bolt进行更深一步的处理。经过对用例的思考,我们的topology中需要如Figure 3中的两个Bolt。

Figure 3:Spout到Bolt的数据流程。

ThresholdCalculatorBolt

Spout将tuple发出,由ThresholdCalculatorBolt接收并进行临界值处理。在这里,它将接收好几项输入进行检查;分别是:

临界值检查

临界值栏数检查(拆分成字段的数目)

临界值数据类型(拆分后字段的类型)

临界值出现的频数

临界值时间段检查

Listing Four中的类,定义用来保存这些值。

Listing Four:ThresholdInfo类

 

public class ThresholdInfo implementsSerializable

 

{

private String action;

private String rule;

private Object thresholdValue;

private int thresholdColNumber;

private Integer timeWindow;

private int frequencyOfOccurence;

}

基于字段中提供的值,临界值检查将被Listing Five中的execute()方法执行。代码大部分的功能是解析和接收值的检测。

Listing Five:临界值检测代码段

 

public void execute(Tuple tuple, BasicOutputCollector collector)

{

if(tuple!=null)

{

List

数据分析咨询请扫描二维码

客服在线
立即咨询