
大数据到底是什么?大数据能做什么?已经讨论得太多太多,但是还是有很多值得聊一聊的,比如,大数据信息可视化,这是 大数据应用 于实际中必须要解决的问题。
早在18世纪,英国统计学家普莱费尔·兰伯特就提出了统计信息可视化的理念,经过长期的发展,信息可视化技术到今天已经成为大数据展示的重要手段,信息可视化作为视觉信息转换技术,以提高数据表现效果为目的,可以更直观对大数据进行浏览与观察,明确数据相关性和隐藏特征。
因此,在整个大数据开发利用的闭环中,让大数据能够被感知并看到,是必不可少的一环。目前正在贵阳观山湖灯会上所运用的大数据人力地图,即是大 数据可视化 的具体体现,可视化的最终目标就是让每一个人都能看到大数据到底是什么。
信息可视化技术是一个相对比较广泛的领域,它能运用到医学、气象、地质、航天等多项技术部门中,也可以运用到商业、政府机构中为其数据的整合提供一个可靠的信息环境”因此信息可视化是一项伟大的国家科学技术和国家经济发展的技术具有重要意义。
现在移动互联网技术高速发展,网络传输等方面可以利用图像或是数据处理技术可以清晰直观的对数据有所掌握,并进实时交互,实现资源共享。
那么大数据信息可视化技术到底是什么呢?信息可视化在本质上是一个可视化的界面,是人机交互技术的综合研究。通过信息可视化技术可以实现多学科的有效整合,对抽象信息更直观的处理,用户可以利用人机计算机交互技术对抽象信息的准确识别”信息可视化技术是数据挖掘、图像处理、人机交互和可视化技术的有机结合,是为了让人们使用直观的感知和视觉观察的方法研究信息。
基于图形设计与认知心理学的信息可视化技术,平面设计注重视觉表现问题的艺术性,对实际操作经验的具体指导。认知心理学是以人的知觉过程为主要研究课题,着力解决人类认知和认知过程的问题。信息可视化是一种数据可视化映射过程,可以通过整合、映射等形式传递信息特征,通过图片、图像、动画等形式来表达信息、图像、文字和声音的内容,可以称之为信息可视化的信息源,可以通过各种方式将其呈现在人们的面前。
近两年, 贵州大数据在应用方面频频出新,特别是基于移动通讯信号端抓取的人流热力分析,那是火爆的不得了。春运大 数据分析 报告,观山湖灯会时时人流信息抓取,贵州春节旅游大数据分析报告,连续三分基于此技术诞生的典型大数据具体应用获得了广泛推广和好评, 但是,在推广的过程中,有些问题并不能回避,那就是显示出的可视化数据有一定的误差值,这到底是咋回事呢?小编今天试着解释下哈。
必须肯定的是基于移动通讯基站所抓取的手机数据本身肯定是精准的,不会出现任何的偏差。但是由于数据抓取都是基于各家服务商自身基站的信息,那么为了表现整体的数据信息,就必须通过统计学概率的原则对原始数据按服务商市场占比进行一定程度的扩容,同时在扩容中还要加上没有手机人群比例,一般来说扩容的比例在1.25至5之间。由于手机信号抓取的样本足够大,按科学方法扩容后,显示出来的数据应该是相当准确的,可是实际运用过程中还有问题。
按手机信号抓取数据的规则,一部手机到了设定好抓取范围内就被计数一次,这个范围可以小到一栋大楼,也可以大到整个世界。当手机离开这个被抓取范围后,在次进入该范围就会被再次计数。了解了这个原理后,我们就可以清晰发现,实际上目前通过移动信号抓取技术,所获得的以基于贵州省全境内的流动数据会出现人流数大于真实数值的情况,原因有二,一是将过境旅客误认为目的地为贵州的旅客,二是重复记录居住在省界之间居民数据信号。
在大范围存在计数过大的问题,而在小范围内还有另外一种情况,就是数据可视化过程中数据延迟的问题。因为计算机按照事先设定好的程序,将信息转化为可视化数据的过程会出现数据迟滞的情况,导致显示界面的数据与真实数值出现偏差。简单说,就是在较长时间范围内,计数是准确无误的,而在较短的范围内,计数可能出现迟滞,显示出的结果就会看起来不准确。
现在我们来讨论解决问题的方法。首先是关于大范围计数重复和无法摈除过境旅客的情况,计数重复可以通过算法优化加以解决,而过境旅客被视为游客的情况,需要嫁接多维数据加以优化,比如嫁接交通数据、旅游景区数据等进行综合分析。其次关于迟滞的问题,解决起来一个字“钱”,通过花钱扩容服务器承载和计算能力,加快计算机处理可视化数据的进程,就能轻松搞定了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01