大数据之基于模型的复杂数据多维聚类析(一)
随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData Analytics)。大数据分析的难点很多,比如,由于海量数据而带来的分析效率瓶颈,使用户不能及时得到分析结果;由于数据源太多而带来的非结构化问题,使传统的数据分析工具不能直接利用。
本文讨论大数据内部关系的复杂性,以及复杂数据所带来的对于聚类分析的挑战。聚类分析的目标是依据数据本身的分布特征(无监督),把整个数据(空间)划分成不同的类。基本的准则是同类的数据应该具有某种的相似性,而异类的数据应该具有某种差异性。现有工作假设在这些数据中存在单一的聚类划分的方法,而聚类目标就是找到这样的一种划分。然而,我们在大数据中所面对的复杂数据是多侧面的,比如在网页数据中既有关于内容的文本属性,也有指向这个网页的链接属性。多侧面数据本身就存在着多种有意义的划分,强制地将数据按照单一的方法聚类,得不到有效的、明确清晰的、可诠释的结果。针对这个问题,多维聚类方法针对数据的不同侧面,得到数据聚类的多种方法,最后让使用者决定需要的聚类划分。
多维聚类的概念
假设我们需要对图中的所有图片进行聚类,可能的聚类方法不止一种:按照图片的内容,我们可以把左边的图片标注成袋鼠,而右边的标注成树;而按照图片风格属性,我们可以把上面的图片称为色彩图,而下面的称为线条图。简而言之,关注数据的不同侧面,有可能得到不同的聚类结果。同时这些聚类结果也都是有意义,可以解释的。
生活中多维聚类的例子很多,比如对于人群的划分,可以按照男女等人口统计学信息划分,也可以按照对于某个事件的看法划分。那么从机器学习的角度如何公式化这样的问题,之后又怎么利用概率统计的方法去解决这样的问题呢?下面我们先给出问题的定义。
如图所示,在聚类分析这样的无监督学习中,输入是一个数据表。表的每一行表示一个数据点,而每一列表示描述这个点的一维属性。大数据的一个重要特征就是维度很高(包含很多列),从而带来的维度灾难(curseof dimensionality)。在聚类分析中,表现为:这些维度可能自然地分成一些组,每组包含一些属性,反应了数据某一侧面(facet)的特征。用户可以根据其中一个侧面的属性,对这个数据进行聚类。比如在右表的数据中,一个学生的数据包含了数学成绩,理综成绩,文综成绩,和语文成绩这些属性。我们可以关注学生的数学和理综成绩,按照理科成绩(分析能力)对学生进行聚类;同时也可以关注学生的文综和语文成绩,按照文科成绩(语言能力)对学生进行聚类。
所以多维聚类的问题定义为:
如何发现数据中包含的多个侧面,即属性的自然分组,针对这些不同侧面进行聚类,从而得到多种聚类方法。
多维聚类分析的工具和原理
贝叶斯网络是一种表示和处理随机变量之间复杂关系的工具。它是通过在随机变量之间加箭头而得到的有向无圈图。箭头表示直接概率依赖关系,具体依赖情况由条件概率分布所定量刻画。出于对计算复杂度的考虑,人们会对贝叶斯网络进行一些限制,在实际中使用一些特殊的网络结构。隐树模型(latent tree model)是一类特殊的贝叶斯网,也称为多层隐类模型(hierarchical latent class model), 是一种树状贝叶斯网, 其中叶节点代表观察到的变量,也称为显变量,其它节点代表数据中没有观察到的变量,也称为隐变量。
图中给出了隐树模型的一个例子。其中,学生的“数学成绩”、“理综成绩”、“语文成绩”和“文综成绩”是显变量,而“智力”、“分析能力”和“语言能力”则是隐变量。从“分析能力”到“数学成绩”有一个箭头, 表示“数学成绩”直接依赖“分析能力”,具体依赖情况由右图中的条件概率表所定量所刻画。表中的内容是说,分析能力低的学生在数学科有0.5的概率不及格、0.4的概率及格、0.1的概率得良,而得优的概率则是0; 等等。模型中的其它箭头代表其它变量之间直接依赖关系,每个箭头都有相应的条件概率分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02