
大数据之基于模型的复杂数据多维聚类析(一)
随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData Analytics)。大数据分析的难点很多,比如,由于海量数据而带来的分析效率瓶颈,使用户不能及时得到分析结果;由于数据源太多而带来的非结构化问题,使传统的数据分析工具不能直接利用。
本文讨论大数据内部关系的复杂性,以及复杂数据所带来的对于聚类分析的挑战。聚类分析的目标是依据数据本身的分布特征(无监督),把整个数据(空间)划分成不同的类。基本的准则是同类的数据应该具有某种的相似性,而异类的数据应该具有某种差异性。现有工作假设在这些数据中存在单一的聚类划分的方法,而聚类目标就是找到这样的一种划分。然而,我们在大数据中所面对的复杂数据是多侧面的,比如在网页数据中既有关于内容的文本属性,也有指向这个网页的链接属性。多侧面数据本身就存在着多种有意义的划分,强制地将数据按照单一的方法聚类,得不到有效的、明确清晰的、可诠释的结果。针对这个问题,多维聚类方法针对数据的不同侧面,得到数据聚类的多种方法,最后让使用者决定需要的聚类划分。
多维聚类的概念
假设我们需要对图中的所有图片进行聚类,可能的聚类方法不止一种:按照图片的内容,我们可以把左边的图片标注成袋鼠,而右边的标注成树;而按照图片风格属性,我们可以把上面的图片称为色彩图,而下面的称为线条图。简而言之,关注数据的不同侧面,有可能得到不同的聚类结果。同时这些聚类结果也都是有意义,可以解释的。
生活中多维聚类的例子很多,比如对于人群的划分,可以按照男女等人口统计学信息划分,也可以按照对于某个事件的看法划分。那么从机器学习的角度如何公式化这样的问题,之后又怎么利用概率统计的方法去解决这样的问题呢?下面我们先给出问题的定义。
如图所示,在聚类分析这样的无监督学习中,输入是一个数据表。表的每一行表示一个数据点,而每一列表示描述这个点的一维属性。大数据的一个重要特征就是维度很高(包含很多列),从而带来的维度灾难(curseof dimensionality)。在聚类分析中,表现为:这些维度可能自然地分成一些组,每组包含一些属性,反应了数据某一侧面(facet)的特征。用户可以根据其中一个侧面的属性,对这个数据进行聚类。比如在右表的数据中,一个学生的数据包含了数学成绩,理综成绩,文综成绩,和语文成绩这些属性。我们可以关注学生的数学和理综成绩,按照理科成绩(分析能力)对学生进行聚类;同时也可以关注学生的文综和语文成绩,按照文科成绩(语言能力)对学生进行聚类。
所以多维聚类的问题定义为:
如何发现数据中包含的多个侧面,即属性的自然分组,针对这些不同侧面进行聚类,从而得到多种聚类方法。
多维聚类分析的工具和原理
贝叶斯网络是一种表示和处理随机变量之间复杂关系的工具。它是通过在随机变量之间加箭头而得到的有向无圈图。箭头表示直接概率依赖关系,具体依赖情况由条件概率分布所定量刻画。出于对计算复杂度的考虑,人们会对贝叶斯网络进行一些限制,在实际中使用一些特殊的网络结构。隐树模型(latent tree model)是一类特殊的贝叶斯网,也称为多层隐类模型(hierarchical latent class model), 是一种树状贝叶斯网, 其中叶节点代表观察到的变量,也称为显变量,其它节点代表数据中没有观察到的变量,也称为隐变量。
图中给出了隐树模型的一个例子。其中,学生的“数学成绩”、“理综成绩”、“语文成绩”和“文综成绩”是显变量,而“智力”、“分析能力”和“语言能力”则是隐变量。从“分析能力”到“数学成绩”有一个箭头, 表示“数学成绩”直接依赖“分析能力”,具体依赖情况由右图中的条件概率表所定量所刻画。表中的内容是说,分析能力低的学生在数学科有0.5的概率不及格、0.4的概率及格、0.1的概率得良,而得优的概率则是0; 等等。模型中的其它箭头代表其它变量之间直接依赖关系,每个箭头都有相应的条件概率分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18