
这次通过一个实例来讲解一下协同推荐的问题。在实际生活中,我们会经常收到当当,卓马逊等购物网站发来的商品推荐邮件。很奇怪卓马逊是依据什么(数据分析师)来给我发一些相关商品的推荐,但是今天我们就假定他是根据协同推荐的机制来实现这一功能的吧。
很多时候购物网站都是根据其他用户的评价给一个用户推荐商品或者图书等。很多购物网站都会有这种长尾效益,用户购买或者评价的商品都是少数,而大多数商品只是得到很少几个用户的评价。所以存在数据稀疏的问题。这里就叫“cold start”问题。SlopeOne算法可以用来解决这个问题,这个算法很简单,易于实现且效率较高。
SlopeOne的基本概念很简单,例如用户X,Y和A都对项目1打了分。同时用户X,Y还对项目2打了分,用户A对项目2可能会打多少分呢?如下表1-1
用户对项目1的评分对项目2的评分
X53
Y43
A4?
根据SlopeOne算法,应该是:4-((5-3)+(4-3))/2=2.5.我想这个应该是很好理解的,实际上就是找到对项目1和项目2都打过分的用户,算出评分差的平均值,我们就可以推测出对项目1打过分的用户A对项目2的可能评分,并向用户A推荐新项目。这里可以看出SolpeOne有一个很大的优点,在有很少数据的时候也能得到一个相对准确的推荐,这一点可以解决“cold start”问题。当然,我们这里的情况是最简单的,根据项目1的评价估计项目2的评价,如果要根据好几个项目的评价来估计某一个项目的评价就要用到加权算法(weighted SolpeOne)。如果有100个用户对项目1和项目2做了评价,1000个用户对项目3和项目2也打了分。显然这两个的权重是不同的。我们的计算方法:(100*(rating 1 to 2)+1000*(rating 3 to 2))/(100+1000)
使用基于SolpeOne算法的推荐需要以下数据:
1)有一组用户
2)有一组项目(items),例如图书,商品等
3)用户对其中某些项目打分(rating)表达他们的喜好
SolpeOne算法要解决的问题是:对某个用户,已经知道他对其中一些项目的评价,向他推荐一些他还没有评分的项目,以增加销售机会。数据分析师认证
一个推荐系统的实现包括以下三步:
1)计算出任意两个项目之间评分的差值
2)输入某个用户的评分记录,推算出对其他项目的可能评分值
3)根据评分的值排序,给出评分最高的项目列表
第一步:例如我们有三个用户和四个项目,用户打分的情况如表1-2
项目用户1用户2用户3
Item1544
Item2454
Item343N/A
Item4N/A55
在第一步中我们的工作就是计算出项目之间两两打分之差,计算出如下矩阵1-3
Item1Item2Item3Item4
Item1N/A0/32/2-2/2
Item20/3N/A2/2-1/2
Item3-2/2-2/2N/A-2/1
Item42/21/22/1N/A
首先要定义一个数据结构来存储该矩阵中的每个打分情况:
public class Rating
{
public float Vlaue {get; set;}
public int Freq {get; set;}
public float AverageValue {
get {return Value/Freq;}
}
}
用一个Dictionary来保存这个结果矩阵,Dictionary的key是Item1Id加上Item2Id,值是Rating:
/************************************************************************/
/* 评分差均值矩阵 */
/************************************************************************/
class RatingDifferenceCollection : Dictionary
{
//获得评分差值矩阵中的key值
private string GetKey(int Item1Id,int Item2Id)
{
//return Item1Id + "/" + Item2Id;
//根据差异矩阵的对称性来简化存储
return (Item1Id < Item2Id) ? Item1Id + "/" + Item2Id : Item2Id + "/" + Item1Id;
}
//判断矩阵中是否存在一对项目的评分差记录
public bool Contains(int Item1Id,int Item2Id)
{
return this.Keys.Contains(GetKey(Item1Id, Item2Id));
}
//获得评分差值矩阵中的Value值
public Rating this[int Item1Id,int Item2Id]{
get {
return this[this.GetKey(Item1Id,Item2Id)];
}
set {
this[this.GetKey(Item1Id, Item2Id)] = value;
}
}
}
接下来实现slopeOne类。首先创建一个RatingDifferenceCollection来保存矩阵,还要创建HashSet来保持系统中总共有那些项目:
//保存评分差异矩阵的字典
public RatingDifferenceCollection _DiffMarix = new RatingDifferenceCollection();
//系统中总共有多少项目
public HashSet _Items = new HashSet();
public void AddUserRatings(IDictionary userRatings)来实现差异矩阵的构建。
第二步:输入某个用户的评分记录,推算出其对其他项目的可能评分值,实现如下
//输入某个用户的评分记录,推算出对其他项目的可能评分值
public IDictionary Predict (IDictionary userRatings)
{
Dictionary Predictions = new Dictionary();
//遍历所有的项目
foreach (var itemId in this._Items)
{
//如果是该用户已经评论过的项目,忽略它
if (userRatings.Keys.Contains(itemId)) continue;
Rating itemRating = new Rating();
foreach (var userRating in userRatings)
{
if (userRating.Key == itemId) continue;
int inputItemId = userRating.Key;
if(_DiffMarix.Contains(itemId,inputItemId))
{
//在差异矩阵中找到相应的项
Rating diff=_DiffMarix[itemId,inputItemId];
itemRating.Value += diff.Freq * (userRating.Value+diff.AverageValue*((itemId
itemRating.Freq += diff.Freq;
}
}
Predictions.Add(itemId,itemRating.AverageValue);
}
return Predictions;
}
第三步就是测试了,根据对用户的评分推测来进行相应商品的推荐
userRating = new Dictionary();
userRating.Add(1,5);
userRating.Add(3,4);
IDictionary Predictions = test.Predict(userRating);
foreach(var rating in Predictions)
{
Console.WriteLine("Item"+rating.Key+"Rating:"+rating.Value);
}
输出:
Item2 Rating:5
Item4 Rating:6
因为矩阵的对称性,在代码中对差异矩阵的存储和相应评分项的存储都有所调整,这里不详细介绍了,完整的实现了一下这个算法,给出了一个Demo在附件中。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18