
这次通过一个实例来讲解一下协同推荐的问题。在实际生活中,我们会经常收到当当,卓马逊等购物网站发来的商品推荐邮件。很奇怪卓马逊是依据什么(数据分析师)来给我发一些相关商品的推荐,但是今天我们就假定他是根据协同推荐的机制来实现这一功能的吧。
很多时候购物网站都是根据其他用户的评价给一个用户推荐商品或者图书等。很多购物网站都会有这种长尾效益,用户购买或者评价的商品都是少数,而大多数商品只是得到很少几个用户的评价。所以存在数据稀疏的问题。这里就叫“cold start”问题。SlopeOne算法可以用来解决这个问题,这个算法很简单,易于实现且效率较高。
SlopeOne的基本概念很简单,例如用户X,Y和A都对项目1打了分。同时用户X,Y还对项目2打了分,用户A对项目2可能会打多少分呢?如下表1-1
用户对项目1的评分对项目2的评分
X53
Y43
A4?
根据SlopeOne算法,应该是:4-((5-3)+(4-3))/2=2.5.我想这个应该是很好理解的,实际上就是找到对项目1和项目2都打过分的用户,算出评分差的平均值,我们就可以推测出对项目1打过分的用户A对项目2的可能评分,并向用户A推荐新项目。这里可以看出SolpeOne有一个很大的优点,在有很少数据的时候也能得到一个相对准确的推荐,这一点可以解决“cold start”问题。当然,我们这里的情况是最简单的,根据项目1的评价估计项目2的评价,如果要根据好几个项目的评价来估计某一个项目的评价就要用到加权算法(weighted SolpeOne)。如果有100个用户对项目1和项目2做了评价,1000个用户对项目3和项目2也打了分。显然这两个的权重是不同的。我们的计算方法:(100*(rating 1 to 2)+1000*(rating 3 to 2))/(100+1000)
使用基于SolpeOne算法的推荐需要以下数据:
1)有一组用户
2)有一组项目(items),例如图书,商品等
3)用户对其中某些项目打分(rating)表达他们的喜好
SolpeOne算法要解决的问题是:对某个用户,已经知道他对其中一些项目的评价,向他推荐一些他还没有评分的项目,以增加销售机会。数据分析师认证
一个推荐系统的实现包括以下三步:
1)计算出任意两个项目之间评分的差值
2)输入某个用户的评分记录,推算出对其他项目的可能评分值
3)根据评分的值排序,给出评分最高的项目列表
第一步:例如我们有三个用户和四个项目,用户打分的情况如表1-2
项目用户1用户2用户3
Item1544
Item2454
Item343N/A
Item4N/A55
在第一步中我们的工作就是计算出项目之间两两打分之差,计算出如下矩阵1-3
Item1Item2Item3Item4
Item1N/A0/32/2-2/2
Item20/3N/A2/2-1/2
Item3-2/2-2/2N/A-2/1
Item42/21/22/1N/A
首先要定义一个数据结构来存储该矩阵中的每个打分情况:
public class Rating
{
public float Vlaue {get; set;}
public int Freq {get; set;}
public float AverageValue {
get {return Value/Freq;}
}
}
用一个Dictionary来保存这个结果矩阵,Dictionary的key是Item1Id加上Item2Id,值是Rating:
/************************************************************************/
/* 评分差均值矩阵 */
/************************************************************************/
class RatingDifferenceCollection : Dictionary
{
//获得评分差值矩阵中的key值
private string GetKey(int Item1Id,int Item2Id)
{
//return Item1Id + "/" + Item2Id;
//根据差异矩阵的对称性来简化存储
return (Item1Id < Item2Id) ? Item1Id + "/" + Item2Id : Item2Id + "/" + Item1Id;
}
//判断矩阵中是否存在一对项目的评分差记录
public bool Contains(int Item1Id,int Item2Id)
{
return this.Keys.Contains(GetKey(Item1Id, Item2Id));
}
//获得评分差值矩阵中的Value值
public Rating this[int Item1Id,int Item2Id]{
get {
return this[this.GetKey(Item1Id,Item2Id)];
}
set {
this[this.GetKey(Item1Id, Item2Id)] = value;
}
}
}
接下来实现slopeOne类。首先创建一个RatingDifferenceCollection来保存矩阵,还要创建HashSet来保持系统中总共有那些项目:
//保存评分差异矩阵的字典
public RatingDifferenceCollection _DiffMarix = new RatingDifferenceCollection();
//系统中总共有多少项目
public HashSet _Items = new HashSet();
public void AddUserRatings(IDictionary userRatings)来实现差异矩阵的构建。
第二步:输入某个用户的评分记录,推算出其对其他项目的可能评分值,实现如下
//输入某个用户的评分记录,推算出对其他项目的可能评分值
public IDictionary Predict (IDictionary userRatings)
{
Dictionary Predictions = new Dictionary();
//遍历所有的项目
foreach (var itemId in this._Items)
{
//如果是该用户已经评论过的项目,忽略它
if (userRatings.Keys.Contains(itemId)) continue;
Rating itemRating = new Rating();
foreach (var userRating in userRatings)
{
if (userRating.Key == itemId) continue;
int inputItemId = userRating.Key;
if(_DiffMarix.Contains(itemId,inputItemId))
{
//在差异矩阵中找到相应的项
Rating diff=_DiffMarix[itemId,inputItemId];
itemRating.Value += diff.Freq * (userRating.Value+diff.AverageValue*((itemId
itemRating.Freq += diff.Freq;
}
}
Predictions.Add(itemId,itemRating.AverageValue);
}
return Predictions;
}
第三步就是测试了,根据对用户的评分推测来进行相应商品的推荐
userRating = new Dictionary();
userRating.Add(1,5);
userRating.Add(3,4);
IDictionary Predictions = test.Predict(userRating);
foreach(var rating in Predictions)
{
Console.WriteLine("Item"+rating.Key+"Rating:"+rating.Value);
}
输出:
Item2 Rating:5
Item4 Rating:6
因为矩阵的对称性,在代码中对差异矩阵的存储和相应评分项的存储都有所调整,这里不详细介绍了,完整的实现了一下这个算法,给出了一个Demo在附件中。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15