
数据模型需要多少训练数据
毫无疑问机器学习是大数据分析不可或缺的一部分,在使用机器学习技术的时候工程师除了要选择合适的算法之外还需要选择合适的样本数据。那么工程师到底应该选择哪些样本数据、选择多少样本数据才最合适呢?来自于Google的软件工程师Malay Haldar最近发表了一篇题为《数据模型需要多少训练数据》的文章对此进行了介绍。
训练数据的质量和数量通常是决定一个模型性能的最关键因素。一旦训练数据准备好,其他的事情就顺理成章了。但是到底应该准备多少训练数据呢?答案是这取决于要执行的任务,要满足的性能,所拥有的输入特征、训练数据中的噪音、提取特征中的噪音以及模型的复杂程度等因素。而找出这些变量之间相互关系的方法就是在不同数据量的训练数据上训练模型并绘制学习曲线。但是这仅仅适合于已经有一定数量的训练数据的情况,如果是最开始的时候,或者说只有很少一点训练数据的情况,那应该怎么办呢?
与死板地给出所谓精确的“正确”答案相比,更靠谱的方法是通过估算和具体的经验法则。例如本文将要介绍的实证方法:首先自动生成很多逻辑回归问题。然后对生成的每一个问题,研究训练数据的数量与训练模型的性能之间的关系。最后通过观察这两者在这一系列问题上的关系总结出一个简单的规则。
生成一系列逻辑回归问题并研究不同数据量的训练数据所造成的影响的代码可以从GitHub上获取。相关代码是基于Tensorflow实现的,运行这些代码不需要任何特殊的软件或者硬件,用户可以在自己的笔记本上运行整个实验。代码运行之后生成的图表如下:
其中,X轴是训练样本的数量与模型参数数量的比率。Y轴是训练模型的得分(f-score)。不同颜色的曲线表示不同参数数量的模型。例如,红色曲线代表模型有128个参数,曲线的轨迹表明了随着训练样本从128 x 1到 128 x 2并不断增长的过程中该模型的得分变化。
通过该图表,我们能够发现模型得分并不会随着参数规模的变化而变化。但是这是针对线性模型而言,对于一些隐藏的非线性模型并不适合。当然,更大的模型需要更多的训练数据,但是对于一个给定的训练模型数量与模型参数数量比率其性能是一样的。该图表还显示,当训练样本的数量与模型参数数量的比率达到10:1之后,模型得分基本稳定在0.85,该比率便可以作为良好性能模型的一种定义。根据该图表我们可以总结出10X规则,也就是说一个优秀的性能模型需要训练数据的数量10倍于该模型中参数的数量。
10X规则将估计训练数据数量的问题转换成了需要知道模型参数数量的问题。对于逻辑回归这样的线性模型,参数的数量与输入特征的数量相等,因为模型会为每一个特征分派一个相关的参数。但是这样做可能会有一些问题:
由于正则化和特征选择技术,很多特征可能会被抛弃,因而与原始的特征数相比,真正输入到模型中的特征数会非常少。
避免这些问题的一种方法是:必须认识到估算特征的数量时并不是必须使用标记的数据,通过未标记的样本数据也能够实现目标。例如,对于一个给定的大文本语料库,可以在标记数据进行训练之前通过生成单词频率的历史图表来理解特征空间,通过历史图表废弃长尾单词进而估计真正的特征数,然后应用10X规则来估算模型需要的训练数据的数据量。
需要注意的是,神经网络构成的问题集与逻辑回归这样的线性模型并不相同。为了估算神经网络所需要的参数数量,你需要:
如果输入是稀疏的,那么需要计算嵌套层使用的参数的数量。参照word2vec的Tensorflow教程示例。
计算神经网络中边的数量
由于神经网络中参数之间的关系并不是线性的,所以本文基于逻辑回归所做的实证研究并不适合神经网络。但是在这种情况下,可以将10X规则作为训练数据所需数据量的下限。
尽管有上面的问题,根据Malay Haldar的经验,10X规则对于大部分问题还是适用的,包括浅神经网络。如果有疑问,可以在Tensorflow的代码中插入自己的模型和假设,然后运行代码进行验证研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15