
数据挖掘助零售业二次起航
随着同业竞争的日渐激烈,传统零售行业跨渠道竞争的手段与方式越来越丰富,同时企业自身的经营成本也在逐年推高,在这一背景之下,企业越来越注重精细化运营管理。
精细化运营离不开对数据的分析解读以及深度挖掘,随着“大数据”的爆发,数据分析的观念也越来越深入人心。数据分析行业在中国已经走过十个年头,发展越来越快,不但有了行业组织,而且涌现出了一批专业的第三方数据分析服务机构,中颢润项目数据分析师事务所就是其中的佼佼者。我们立足于零售领域,总结了一些零售行业普遍存在的问题和一些解决思路的整体设计和解决方案的搭建。
一、供应链管理
供应链在零售行业有着举足轻重的地位,如何高效管理供应链成为零售企业控制成本、提高运营效率的最为直接有效的方式。
供应链比较经典的管理模型主要是ABC管理模型,在ABC管理模型之上,我们引入第三维度来细化管理方案,同时加入定时与定量两种库存订货模型,做成组合模型应用。
通过模型的组合应用,可以帮助企业解决资金占压与货品短缺的问题。
供应链的数据分析不仅包含供应商数据的分析,货品数据的分析,物流数据的分析,同时还应该包含企业内部其他的运营等支持活动的数据分析。
二、销售数据分析
1、销售数据常规分析
在我们服务于零售企业的过程中发现,大部分零售企业已经对日常经营数据进行了一些分析,其中包括日常的销售商品数据,如客单数、客单价、销售量、销售额以及供应商的一些数据。但目前这些数据的应用还局限于简单的描述性分析,并没有挖掘到更多的有价值的信息,对提高企业运营效率、产品销量和客户粘性的帮助有限。
2、商品数据分析
通过商品敏感分类表,能够区分不同商品的价格弹性或顾客对商品价格的敏感程度,从而为正确地选择促销产品类别和制定合理的促销方案(包括打折幅度)提供指导。
通过商品盈利分类表,能够区分不同商品的盈利性,准确分辨高盈利性商品、低盈利性商品,为制定合理的存货比率提供指导。
3、客户数据分析
(1)顾客忠诚计划
伴随着零售企业的迅猛发展,零售业的市场逐渐趋于饱和。受到土地等扩充成本的制约,依靠跑马圈地和打价格战很难超越竞争对手。加强日常管理,提高客户购物体验和客户忠诚度,成为零售企业的新出路。为此,零售企业需要回答以下问题:
ü如何通过商品的有效布局增加销售量?
ü如何评估促销活动效果?
ü如何提升顾客忠诚度?
以上问题可以通过客户细分加以解决。客户细分是指将一个大的消费群体划分为若干小的细分群体,其中同属于一个细分群的客户具有相似的消费特征。
客户细分可以使零售企业对不同细分群中的客户区别对待,提供差异化的服务,从而增加相应细分顾客群体的购买。典型的情况是利用“二八原则”,区分出那个只占顾客总人数20%,却为企业创造了80%销售额的群体,通过为这一群体提供差异化的服务,将增强企业盈利的稳定性和发展能力。
(2)关联分析与交叉销售
通过关联分析,我们可以对产品进行重新分类,把相互带动销售的产品在摆放时即分门别类,这种关联并非我们直观意义上的相关产品。而是需要大量数据进行分析,进而发现符合客户体验的关联产品。
交叉销售是指向老顾客销售新产品的过程。交叉销售能否成功,取决于对顾客需求和偏好的理解和把握,这些也可以通过数据分析来实现。
基于对顾客线上购买流程和交易行为的跟踪和研究,进行关联分析,从而为类似的用户形成有利的相关推荐。例如,根据用户购买量,对某类畅销产品排行,形成TOP10;再比如,当某用户购买了某产品后,提示该用户,购买过这个产品的顾客还买过哪些产品;此外,还可将用户购买行为与通过网站调查所挖掘出的用户喜好建立关联,对目标用户按其偏好开展相应的促销推广活动。
总之,零售企业由于积累了大量数据,可借助数据分析提高运营效率的环节很多。零售企业应该在常规统计分析的基础上,对现有数据进行更深入的挖掘和分析。中颢润项目数据分析师事务所长期与零售企业开展合作,在基础的数据分析基础之上,相应设计了一些灵敏的统计指标,挖掘出了数据的更深层次价值,使得零售企业的日常数据分析与把握更加轻松。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28