京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘助零售业二次起航
随着同业竞争的日渐激烈,传统零售行业跨渠道竞争的手段与方式越来越丰富,同时企业自身的经营成本也在逐年推高,在这一背景之下,企业越来越注重精细化运营管理。
精细化运营离不开对数据的分析解读以及深度挖掘,随着“大数据”的爆发,数据分析的观念也越来越深入人心。数据分析行业在中国已经走过十个年头,发展越来越快,不但有了行业组织,而且涌现出了一批专业的第三方数据分析服务机构,中颢润项目数据分析师事务所就是其中的佼佼者。我们立足于零售领域,总结了一些零售行业普遍存在的问题和一些解决思路的整体设计和解决方案的搭建。
一、供应链管理
供应链在零售行业有着举足轻重的地位,如何高效管理供应链成为零售企业控制成本、提高运营效率的最为直接有效的方式。
供应链比较经典的管理模型主要是ABC管理模型,在ABC管理模型之上,我们引入第三维度来细化管理方案,同时加入定时与定量两种库存订货模型,做成组合模型应用。
通过模型的组合应用,可以帮助企业解决资金占压与货品短缺的问题。
供应链的数据分析不仅包含供应商数据的分析,货品数据的分析,物流数据的分析,同时还应该包含企业内部其他的运营等支持活动的数据分析。
二、销售数据分析
1、销售数据常规分析
在我们服务于零售企业的过程中发现,大部分零售企业已经对日常经营数据进行了一些分析,其中包括日常的销售商品数据,如客单数、客单价、销售量、销售额以及供应商的一些数据。但目前这些数据的应用还局限于简单的描述性分析,并没有挖掘到更多的有价值的信息,对提高企业运营效率、产品销量和客户粘性的帮助有限。
2、商品数据分析
通过商品敏感分类表,能够区分不同商品的价格弹性或顾客对商品价格的敏感程度,从而为正确地选择促销产品类别和制定合理的促销方案(包括打折幅度)提供指导。
通过商品盈利分类表,能够区分不同商品的盈利性,准确分辨高盈利性商品、低盈利性商品,为制定合理的存货比率提供指导。
3、客户数据分析
(1)顾客忠诚计划
伴随着零售企业的迅猛发展,零售业的市场逐渐趋于饱和。受到土地等扩充成本的制约,依靠跑马圈地和打价格战很难超越竞争对手。加强日常管理,提高客户购物体验和客户忠诚度,成为零售企业的新出路。为此,零售企业需要回答以下问题:
ü如何通过商品的有效布局增加销售量?
ü如何评估促销活动效果?
ü如何提升顾客忠诚度?
以上问题可以通过客户细分加以解决。客户细分是指将一个大的消费群体划分为若干小的细分群体,其中同属于一个细分群的客户具有相似的消费特征。
客户细分可以使零售企业对不同细分群中的客户区别对待,提供差异化的服务,从而增加相应细分顾客群体的购买。典型的情况是利用“二八原则”,区分出那个只占顾客总人数20%,却为企业创造了80%销售额的群体,通过为这一群体提供差异化的服务,将增强企业盈利的稳定性和发展能力。
(2)关联分析与交叉销售
通过关联分析,我们可以对产品进行重新分类,把相互带动销售的产品在摆放时即分门别类,这种关联并非我们直观意义上的相关产品。而是需要大量数据进行分析,进而发现符合客户体验的关联产品。
交叉销售是指向老顾客销售新产品的过程。交叉销售能否成功,取决于对顾客需求和偏好的理解和把握,这些也可以通过数据分析来实现。
基于对顾客线上购买流程和交易行为的跟踪和研究,进行关联分析,从而为类似的用户形成有利的相关推荐。例如,根据用户购买量,对某类畅销产品排行,形成TOP10;再比如,当某用户购买了某产品后,提示该用户,购买过这个产品的顾客还买过哪些产品;此外,还可将用户购买行为与通过网站调查所挖掘出的用户喜好建立关联,对目标用户按其偏好开展相应的促销推广活动。
总之,零售企业由于积累了大量数据,可借助数据分析提高运营效率的环节很多。零售企业应该在常规统计分析的基础上,对现有数据进行更深入的挖掘和分析。中颢润项目数据分析师事务所长期与零售企业开展合作,在基础的数据分析基础之上,相应设计了一些灵敏的统计指标,挖掘出了数据的更深层次价值,使得零售企业的日常数据分析与把握更加轻松。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23