京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业大数据运用何以“从0到1”
众所周知,保险业正处于科技推动变革的阶段,以互联网、移动社交网络、云计算和大数据为代表的数字化技术,正加速影响着保险业的日常运作。
“在所有的新技术中,大数据对保险行业的影响最具颠覆性。”波士顿咨询公司与中保协近日联合发布的《互联网+时代,大数据改良与改革中国保险业》指出,一方面,大数据分析将“改良”传统保险行业的日常运作,这种影响体现在价值链的方方面面,以风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测及理赔预防与缓解为重点;另一方面,大数据与互联网还将“颠覆”传统的保险业务边界与商业模式,如基于使用的保险(UBI)以及平台化的生态圈,并带来大量的跨界竞争与颠覆场景。
事实上,大数据对保险价值链的影响体现在方方面面,根据波士顿咨询的研究,最重要的“改良效应”发生在五个环节,即风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测、理赔预防与缓解。
就风险评估与定价方面而言,在大数据时代,风险特征的描述被极大丰富,数据资源的获取也将越发便利。在车险领域,除获得车型数据、汽车零整比数据、二手车数据以外,险企还使用车载传感设备收集驾驶员行为风险,开发UBI车险;在寿险领域,险企利用可穿戴设备能够实时监控人体健康情况(运动量、睡眠、心跳等),弥补了生命表对于洞察细分群体的人体健康及生死概率的能力不足。
值得一提的是,对来自互联网和社交媒体的非结构化数据分析,有助于识别消费者潜在风险。如美国ZestFinance通过对贷款申请人超过1万条的互联网数据进行分析,为银行贷款、信用卡及保险提供高质量的担保评估,使得违约率比行业平均水平低60%左右。而中国平安相关负责人日前也透露,未来旗下的前海征信将会联手保险机构,帮助识别投保人的潜在风险,以进行精准定价、识别欺诈。
而对于最大化客户价值、促进业务协同的最重要手段,交叉销售也能在大数据时代被提质增效。鉴于只有细分与洞察客户,精确了解其关键需求,才能大幅提升交叉销售的准确率。波士顿咨询公司认为,险企需要建设分析型客户关系管理平台,以对客户数据进行统一管理并建立客户分析模型,发挥共享与集约优势,避免专业公司各自为战。而对于业务结构不均衡的集团,更适合由强势业务带动弱势业务发展,如果能够实现客户资源跨法律实体共享,至少可以挖掘10%~20%的潜在市场价值。
此外,借助大数据手段,险企还可以显著提升反欺诈的准确性和及时性。大数据模型可以自动识别出理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈网络。同时,要确保数据资源,数据越完整、越多样,则越有可能通过复杂的算法与分析识别可能的欺诈行为,其中必要的数据包括理赔历史记录、保单信息、其他保险公司数据、医疗保险数据、事故统计数据、征信记录、犯罪记录、社交网络数据等。
值得注意的是,虽然险企都非常看重对大数据的应用,但是正如中国平安董事长马明哲近日在该公司半年报沟通会上所言,“不是人人都有大数据,99%的公司包括互联网企业拥有的只是信息,还不能说是大数据”。
马明哲坦言,要在互联网上判断一个人的全貌,必须掌握其3600种不同因子的数据,尽管中国平安有20多家金融公司,拥有超过7亿用户的多维度信息和数据,包含几百个因子,但也是冰山一角而已。所谓大数据,必须有足够大的量和频率,要有多样性,用户的消费数据、社交数据、日常行为数据等,并且能够智能互联、动态分析,否则只是局部的资料而已。
在波士顿咨询调研的险企中,63%的车险公司已开展车联网应用,16%已开展平台生态圈实践。波士顿咨询指出,相比欧美市场,在中国推广UBI车险似乎“有些尴尬”,考虑到国内车险整体盈利堪忧,若以更优惠的价值作为切入点,很可能造成更大程度上的行业亏损。除非险企能够利用车联网更好地选择风险、识别理赔欺诈并提供增值服务,追求在综合成本率和客户满意度方面的质量提升。
而对于目前穿戴式设备在健康险中的应用,目前国内险企普遍采取观望态度,虽然认为可穿戴设备未来发展潜力巨大,但法律风险及伦理风险巨大,亟须相关法律法规进一步完善,因此相比人体健康数据,险企更希望获得来自医疗、体检机构的电子病例,用于理赔关联和产品定价。
不过,当前险企一致看好垂直平台生态圈,认为互联网时代险企势必与各行各业开展多项合作、提供一揽子服务,共同构建数字化保险的平台生态圈。对此,波士顿咨询公司建议,目前生态圈建设难度较大、周期较长,涉及商业模式改良及资源整合等众多难题,尚需险企勇于投入、耐心求索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21