
保险业大数据运用何以“从0到1”
众所周知,保险业正处于科技推动变革的阶段,以互联网、移动社交网络、云计算和大数据为代表的数字化技术,正加速影响着保险业的日常运作。
“在所有的新技术中,大数据对保险行业的影响最具颠覆性。”波士顿咨询公司与中保协近日联合发布的《互联网+时代,大数据改良与改革中国保险业》指出,一方面,大数据分析将“改良”传统保险行业的日常运作,这种影响体现在价值链的方方面面,以风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测及理赔预防与缓解为重点;另一方面,大数据与互联网还将“颠覆”传统的保险业务边界与商业模式,如基于使用的保险(UBI)以及平台化的生态圈,并带来大量的跨界竞争与颠覆场景。
事实上,大数据对保险价值链的影响体现在方方面面,根据波士顿咨询的研究,最重要的“改良效应”发生在五个环节,即风险评估与定价、交叉销售、客户流失管理、理赔欺诈检测、理赔预防与缓解。
就风险评估与定价方面而言,在大数据时代,风险特征的描述被极大丰富,数据资源的获取也将越发便利。在车险领域,除获得车型数据、汽车零整比数据、二手车数据以外,险企还使用车载传感设备收集驾驶员行为风险,开发UBI车险;在寿险领域,险企利用可穿戴设备能够实时监控人体健康情况(运动量、睡眠、心跳等),弥补了生命表对于洞察细分群体的人体健康及生死概率的能力不足。
值得一提的是,对来自互联网和社交媒体的非结构化数据分析,有助于识别消费者潜在风险。如美国ZestFinance通过对贷款申请人超过1万条的互联网数据进行分析,为银行贷款、信用卡及保险提供高质量的担保评估,使得违约率比行业平均水平低60%左右。而中国平安相关负责人日前也透露,未来旗下的前海征信将会联手保险机构,帮助识别投保人的潜在风险,以进行精准定价、识别欺诈。
而对于最大化客户价值、促进业务协同的最重要手段,交叉销售也能在大数据时代被提质增效。鉴于只有细分与洞察客户,精确了解其关键需求,才能大幅提升交叉销售的准确率。波士顿咨询公司认为,险企需要建设分析型客户关系管理平台,以对客户数据进行统一管理并建立客户分析模型,发挥共享与集约优势,避免专业公司各自为战。而对于业务结构不均衡的集团,更适合由强势业务带动弱势业务发展,如果能够实现客户资源跨法律实体共享,至少可以挖掘10%~20%的潜在市场价值。
此外,借助大数据手段,险企还可以显著提升反欺诈的准确性和及时性。大数据模型可以自动识别出理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈网络。同时,要确保数据资源,数据越完整、越多样,则越有可能通过复杂的算法与分析识别可能的欺诈行为,其中必要的数据包括理赔历史记录、保单信息、其他保险公司数据、医疗保险数据、事故统计数据、征信记录、犯罪记录、社交网络数据等。
值得注意的是,虽然险企都非常看重对大数据的应用,但是正如中国平安董事长马明哲近日在该公司半年报沟通会上所言,“不是人人都有大数据,99%的公司包括互联网企业拥有的只是信息,还不能说是大数据”。
马明哲坦言,要在互联网上判断一个人的全貌,必须掌握其3600种不同因子的数据,尽管中国平安有20多家金融公司,拥有超过7亿用户的多维度信息和数据,包含几百个因子,但也是冰山一角而已。所谓大数据,必须有足够大的量和频率,要有多样性,用户的消费数据、社交数据、日常行为数据等,并且能够智能互联、动态分析,否则只是局部的资料而已。
在波士顿咨询调研的险企中,63%的车险公司已开展车联网应用,16%已开展平台生态圈实践。波士顿咨询指出,相比欧美市场,在中国推广UBI车险似乎“有些尴尬”,考虑到国内车险整体盈利堪忧,若以更优惠的价值作为切入点,很可能造成更大程度上的行业亏损。除非险企能够利用车联网更好地选择风险、识别理赔欺诈并提供增值服务,追求在综合成本率和客户满意度方面的质量提升。
而对于目前穿戴式设备在健康险中的应用,目前国内险企普遍采取观望态度,虽然认为可穿戴设备未来发展潜力巨大,但法律风险及伦理风险巨大,亟须相关法律法规进一步完善,因此相比人体健康数据,险企更希望获得来自医疗、体检机构的电子病例,用于理赔关联和产品定价。
不过,当前险企一致看好垂直平台生态圈,认为互联网时代险企势必与各行各业开展多项合作、提供一揽子服务,共同构建数字化保险的平台生态圈。对此,波士顿咨询公司建议,目前生态圈建设难度较大、周期较长,涉及商业模式改良及资源整合等众多难题,尚需险企勇于投入、耐心求索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18