
大数据时代,客户服务将如何被改变_数据分析师考试
最近,“大数据”已经取代了“云技术”,成为了新技术的热门话题,各类“大数据”的书籍层出不穷,文章更是琳琅满目,仿佛你要是不和“大数据”扯上点关系,你就OUT了!笔者对这些文章也略有涉猎,但觉徒挂“大数据”虚名者多,而真知者寡。为了让大家更容易理解大数据的内涵?请允许我先简单地介绍一下大数据的定义和背景。
麦肯锡的报告是这样定义的:大数据是指无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合。(Big data refers to datasets whose size is beyond the ability oftypical database software tools to capture, store, manage, and analyze.)
大数据这个概念又是怎么来的呢?2011 年5 月,EMC 举办了一次主题“云计算相遇大数据”的大会,首次抛出了“大数据”(Big Data)概念;6 月,由EMC 赞助,IDC 编制的年度数字宇宙研究报告《从混沌中提取价值》 (Extracting Value from Chaos) 发布;紧接着,IBM、麦肯锡等众多国外机构发布“大数据”相关研究报告,予以积极跟进。
从背景我们可以看到EMC(全球最大的外置存储硬盘供应商)是推动“大数据”这个概念的主谋,他这么做,当然是想多卖点硬盘。这种软广告式炒作不但没引起反感和吐槽,反而被社会各界认可与接收,也是跟其社会背景密不可分。由于近年数据产生成本急速下降,人类产生的数据量正在呈指数级增长,其中80%以上都是传统数据库无法处理的非结构化数据。这些数据到底有多大呢?根据IDC 的监测,全球在2010 年正式进入ZB 时代,预计到2020 年,全球将总共拥有35ZB 的数据量,如果把35ZB 的数据全部刻录到容量为9GB 的光盘上,其叠加的高度相当于在地球与月球之间往返三次……在这么直观的比喻面前,其他语言也要苍白无力了!
也许你会说大数据这种现象不用说,我们早就看出来了,不就是数据大么,能给我们的社会带来什么实质性的影响啊,或者我怎么没看到它的应用?关于大数据的应用,我在这里就不赘述了,市面上各种“大数据”的书已经谈了很多案例了。我只想说“剖析历史可以洞察未来”,几年前说“云技术”还很遥远的那些人,却在将自己的文档、照片、视频上传至“iCloud”,使用着“搜狗云输入法”,登陆Dropbox、Yelp、Zynga等网站(这些网站正托管于亚马逊的"云平台")......那片飘在天上的“云”早已不是“触不可及”。
根据麦肯锡全球研究所的研究报告《Big data: The next frontier for innovation, competition, andproductivity》,大数据将给医疗服务、公共管理、定位服务、零售和制造各个行业带来显著的应用价值,例如,对美国的医疗服务业每年创造价值3000亿美元,约0.7%的年增长率,对美国制造业最高可下降50%的产品研发和装配成本。麦肯锡的这份报告详致地阐明了大数据对各行各业的利好,推荐大家阅读,我这里只谈大数据对客户服务领域的影响。
在云时代,淘宝推出的一种极具“云”特色的客户服务模式——云客服,云客服把社会上喜欢帮助人且有能力帮助人的淘宝人聚集在一起,使客服人员在家里或学校对客户提供远程服务,实现了“HO(Home Office,驻家办公)”,并充分利用了客服人员的零散时间,不仅降低了成本,还提高了效率。当然,这个“云”并不是真正意义上的云技术,只是一种概念和噱头。而在大数据时代,又将会给客户服务带来哪些商业价值呢?
我认为,大数据将对客户服务带来一次变革,给客户服务带来极大的想象空间和无限的发展前景。甚至可以使客服部门从原来的成本中心(高成本、低价值)转型为利润中心(提升品牌价值,创造收入)。在这里我举三个例子跟大家探讨一下,展望一下客户服务的未来。
一、智能语音客服
目前,通信运营商等在客服领域比较先进的企业已经实现了智能文字客服,通过文字识别技术和智能匹配算法对通过短信和网站文字客服提出的服务诉求智能匹配答案,不需人工判断。要实现智能语音客服,也要通过识别和匹配这两关。
我们先说说识别吧。早在Siri之前,就已经有很多语音识别工具问世,最早的基于电子计算机的语音识别系统是由AT&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字,现在AT&T的语音系统 Watson已经可以实现在线德语和英语的实时口译。以现在的技术,语音的识别依然比较困难,主要面临的难点有2个:
1.算法
算法是软件的核心,目前的语音识别算法使用的语言模型仍是一种概率模型,还未发展成以语言学为基础的文法模型,算法不突破,效果无法取得突飞猛进的进展。算法的优化不是一朝一夕的事情,需要慢慢不断地进行,尤其语音这种非结构化数据(不便用数据库二维逻辑表来表现的数据),但随着大数据分析技术(用于非结构化数据的管理分析)的发展,也会对新算法开发带来福音。一些核心算法如特征提取、搜索算法和自适应算法也都在一步步改进,且随着数据源的不断丰富,算法的识别效果也就越来越精准。
2.适应性
由于方言、语气、环境和音色等因素的影响,限制了语音识别算法的效果,这就需要语言识别系统具有一定的自适应性,不同口音、方言的识别都需要以一个庞大的语音数据库为基础,对这些非结构化数据的管理分析就更加指望大数据技术了。至于排除环境噪音、音色等因素,个人感觉要依赖半导体传感技术的进步,留待硬件领域的专家进一步探讨。
接下来就说到匹配了。目前,匹配的算法已经相对比较成熟了,也许和大数据技术没有直接联系,不过其准确性也有赖于数据源的丰富程度,同时要在不断产生的“交互数据”中动态地调整匹配结果。
综上所诉,随着数据源越来越多,大数据技术的不断进步,语音识别系统也在持续地完善之中,说到底,算法依然是核心,而数据则是基础,对于这类非结构化数据,也许传统的数据库技术Handle不住,但大数据技术却大有可为。相信不久,语音识别的技术的突破不仅可以实现智能语音客服,还将变革人与物之间的交互方式。
二、语音文本转换
因为这个功能的核心也是语音识别,所以大数据技术对的转换准确度的保障支撑就不用再说了。之所以单列出来谈呢,是因为其对客户服务别有一番作用。
对于呼叫中心而言,客服人员与用户的通话都是要录音备份的,这些语音数据可真的不小哦,仅以广东移动为例,广东移动客服中心每年就要新增约60T的数据存储,这个体量对于一般的企业来说已经是“大数据”了。据悉,这些数据是用磁带来保存的,而且这些要保存几十年不能销毁,想想到时候光这些磁带所占用的房间租金就是不少钱啊,更何况是其他成本。而如果能将这些语音准确地转换成文本之后,文本存储所占用的空间就小的多(一个移动硬盘都可以存储一个图书馆的数据量了),存储成本简直就是直线下降,不仅实现了低成本高效,对自然环境也是一种利好。
有人会质疑这些录音是为了便于追溯留证的,不是原始的录音记录,客户不认账怎么办?当然,我要声明不是所有的录音都要转换成文本,对于客户投诉或办理业务的来电,仍然保留录音记录,一则便于企业对客服人员的服务态度(说话语气什么的还真要靠语言才能判断)和质量进行抽检,二则备份留证。而对于更多的咨询或查询类来电,通常不必留证,将这些语音转成文本之后,不仅减少了存储空间,这些文本数据还可用于后续的信息挖掘,用来改进服务或发现商机,毕竟文本的信息分析要比语音的容易得多。
三、客户信息挖掘
在互联网时代,除了用户数、营业额等,数据已经被认为是未来的核心资源。我记得马云曾说过类似这样的话“你知道全国哪个省份的女人胸围最大么?你知道哪个城市的男人最喜欢用什么牌子的衣服、香水么?你们都不知道,淘宝知道。”每年有多少企业关注《淘宝用户行为报告》,以图挖掘出一些数据来提升自己的销量,从这里,数据的价值可见一斑。
而客服部门作为企业前端的客户直接接触窗口,每天都可以从客户身上获取大量的信息,甚至可以在客户比较满意的时候,主动获取一些爱好、职业等信息,积少成多,某些时候,这些数据将为企业巨大的价值。当然,这些数据的录入也不能仅靠人工,其中更涉及客户视图和标签的问题,待下文再进行剖析思考。对客户信息挖掘的应用,我在此举两个简单的例子。比如,通过数据的挖掘,可以发现哪些用户是高尔夫球爱好者,进行精准营销,避免盲目营销导致的客户反感及投诉。再如,随着定位技术成为了手机的标配,个人位置信息已经成了客户服务领域待被开采的金矿,国外运营商已经开始分析这些个人位置信息的数据,并将洞察结果面向政企客户提供,这些位置信息可以为企业的实体店、营业厅选址提供依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01