
大数据提速车险市场化改革_数据分析师考试
继《中国保监会关于深化商业车险条款费率管理制度改革的意见》、《中国保监会关于印发〈深化商业车险条款费率管理制度改革试点工作方案〉的通知》发布后,保监会日前又印发了《商业车险改革统计制度(试行)》,要求各财产保险公司按照规定的指标、口径及要求报送统计数据,自今年7月1日起实施,各公司从7月开始报送6月数据。
值得注意的是,搜集险企报送的有关数据不仅有助于监管部门及时掌握商业车险改革后险企经营情况和车险市场发展状况,而且可以充实车险信息搜集,从而提升车险行业对大数据的运用效率,进一步推动车险费率市场化改革。正处在风口浪尖上的大数据又一次和车险来了个“激情碰撞”,那么究竟哪些大数据才是对车险业务开展真正有用的?如何才能捕捉到这些大数据?
大数据助推车险改革
中国保险学会会长姚庆海日前表示:“移动互联网、大数据时代下,汽车消费者的个人信息、社会信息和汽车的静动态信息数据,在为保险行业风险管理带来基础性技术支撑的同时,也给消费者汽车生活、产业链协同发展以及社会管理带来现实价值。”
“都说性格决定命运,其实开车也如此,性格决定风险。”就汽车消费者个人信息而言,平安产险总经理助理王国平在接受本报记者采访时指出,车辆使用时喜欢急加速、踩油门、急减速、开车打电话等,都是不守规矩的表现,这是性格特征,而不是偶然;消费投资信用行为,如信用差的人比信用好的人风险高一倍,而喜欢稳健投资的人、喜欢消费透支的人行车风险也不一样;社交行为,如使用微信、上网时间也可以看到风险差异。
众所周知,大数据有大量化、快速化、多样化、价值化的特征。对此,王国平认为,以前车险定价是“一类一价”,将来可以做到“一车一价”。未来的定价跟车辆驾驶员,包括行驶里程、行驶路线、驾驶习惯等密切相关,主要考验的是险企的风险筛选能力。
除对车险定价发展的助推作用之外,中国保信总裁吴晓军坦言,大数据还有助于精准营销和客户细分,实现真正以客户为中心;将提升保险反欺诈风险识别与控制能力;促进保险与汽车产业的渗透与融合。
“互联网及大数据的应用,将给车险带来新业态和行业格局。”姚庆海强调称,车险未来的行业格局很难准确预测,但可以肯定的是通过内生创新驱动,产业链以及交叉产业链的融合发展,车险的大挑战、大发展时代已经到来。
车联网促进大数据搜集
事实上,正如姚庆海所言,“互联网+车险”时代,大数据及其挖掘处理技术是车险行业竞争的核心资源。
其中,车险信息平台是车险费率市场化改革的重要技术支撑和车险产品服务创新的重要数据支持。根据吴晓军透露,截至2015年4月底,全国车险信息平台覆盖全国35个省市、59家保险总公司、822家省级保险分公司,基本实现了全国范围内机动车辆保险数据信息的汇集利用和交互共享。
除这一行业公共基础设施外,车联网也是近年来备受关注的大数据搜集平台。姚庆海指出,我国车联网保险总体而言仍处在发展初期,产业链上的参与者正在积极构建局部车联网,但作为车联网基础的通信协议等尚未统一,且由于投入高、推广难,使得车联网的渗透率提升较缓慢。
纵观国外车联网发展,据车联网公司车宝CEO帅勇介绍,Progressive公司提前30至60天给用户车载设备,观察其驾驶行为,确定车险保费折扣;Metromile公司发放车载设备给用户,按公里数实际驾驶支付保费。
对此,毕马威咨询高级经理窦一平认为,车联网在风险细分方面,增加行驶行为变量,考虑了人的因素对出险情况的影响,可提升风险预测的解析精度。精准定价方面,利用精确定价技术对客户进行谨慎驾驶奖励,或直接降低价格,以争取市场份额;主动接受并选择车联网保险的用户趋向于谨慎驾驶,由客户为保险公司主动进行风险筛选;即时对用户驾驶行为进行反馈,还可降低事故发生。降低成本方面,增加了交叉销售机会,可与投保人有更多互动;降低舞弊风险,通过增加定损效率以及精确程度,进一步降低理赔成本。
手机车联网或后来居上
毋庸置疑的是,车联网拥有广阔的发展前景及巨大商机,然而其中一个制约因素就是用户渗透率较低,车主不愿为软硬件投入和数据传输成本买单。
窦一平透露,多年来,用于车联网技术的车载设备的价格已下降至每台设备大约200元。而一些保险公司则开始使用智能手机,通过运用可以监控距离、进行GPS定位和监控驾驶/移动行为的应用软件,来减少对车载设备的投资成本。
“车联网技术的成本更多是每月的维护费用,这包括通过手机网络传输数据、数据存储、数据清理等。”窦一平称,每月每台设备的维护费用可以达到20元到40元,而使用客户自己的智能手机取代车载设备则可以减少这些维护和数据的成本。
由此可见,零成本优势的“手机车联网”有望轻装急进、后来居上。日前,OK车险iOS版本发布“行程管理”功能,用户无需操作,就可以通过智能算法自动检测驾驶行为,为用户提供及时精准的行程历史信息以及驾驶行为分数,就“控制力”、“警惕性”、“注意力”三个维度对用户的驾驶行为做出安全评级,筛选优质车主。据悉,相较综合分数标准没达到“好”的用户,存在注意力不集中、超速急刹、警惕性不够、不遵守交规等驾驶行为。结合其他维度的数据考量,OK车险将会设定一套科学量化的车主奖惩体系,在例如车险投保以及违章代办等服务中,对优质车主提供更多优惠,并相应提高劣质车主的费用,以激励和提高车主的安全驾驶意识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05