
Stata软件对截断和删失数据处理方法介绍
截断和删失是完全不同的现象,都会导致我们的样本不完整。这些现象出现在医疗科学、工程、社会科学和其他研究领域。如果忽略截断和删失,当我们分析数据时,我们的人口参数估计就会不一致。
截断和删失会出现在处理样本的过程中,那我们就从定义左截断和左删失开始:
当低于阈值的个体在样本中不存在时,我们的数据就属于左截断。比如,我们想研究某些鱼的大小,以捕鱼网为样本,鱼小于鱼网,所以在我们的样本中是不存在的。
我们的数据从K开始左删失,如果每个个体值在样本中存在并低于K,但实际值未知。例如,我们有一个测量仪器,不能检测到一定水平以下的值时,就会发生这种情况。
我们主要讨论左截断和左删失,但是我们讨论的概念可以应用到所有的截断和删失中去:右截断、右删失和区间。
当执行截断或删失数据的估计时,我们需要使用一些工具来说明这些不完整的数据。对于截断线性回归,我们可以使用truncreg命令;对于删失线性回归,我们可以使用intreg和tobit命令。
这篇文章,我们将要分析截断数据和删失数据的特征,并讨论用truncreg命令和tobit命令来说明不完整的数据。
截断数据
案例:皇家海军陆战队
Fogel et al.(1978)发布了皇家海军陆战队人员的身高的数据集,此数据可以扩展到2个世纪。它可以用来确定不同时期,英国男性的平均身高。Trussell and Bloom (1979)指出样本被截断,由于新兵最低身高的限制。数据被截断了(而不是删失),因为身高低于最低限制的个人都没有出现在样本中。考虑到这一事实,他们拟合了1800年到1809年期间皇家海军陆战队身高的截断分布。
由于Trussell和Bloom提到的问题,我们使用了人工数据集。我们假设人口数据服从正态分布μ=65和σ=3.5,并且都是左截断到64.
我们使用一个直方图来总结我们的数据:
可以看到截断点,没有小于64的数据。
如果我们忽略截断,会发生什么呢?
如果我们忽略截断,将不完整的数据视为完整的,样本均值与总体均值就会不一致,因为截断点以下的所有观测值都是缺失的。在我们的实例中,真实的均值95%都在置信区间预测平均值外。
我们可以将样本直方图与忽略截断后得出的正态分布进行比较,并且把这些值看成是人口均值和标准差的估计。
使用truncreg考虑截断
我们可以使用truncreg来估计潜在非截断分布的参数。考虑左截断64,可以使用选项ll(64)。
现在估计的值接近我们的实际模拟值μ=65,σ=3.5。
让我们将截断密度重叠到数据直方图中去。
截断分布适合我们的样本,我们分析人口分布均值等于65,标准偏差等于3.5.
删失数据
现在我们看一下删失数据的案例,看看他们和截断数据之间的区别。
案例:家庭表面尼古丁的含量情况
Matt et al.在2004年进行了一项研究,对烟草烟雾污染吸烟者家庭的整个表面进行了评估。非常有趣的一项测量是家具表面的尼古丁含量情况。每个家庭中的擦拭样本来自每件家具。然而,尼古丁污染低于一定限度的,测量仪检测不到。
数据被删失了,而不是被截断了。当尼古丁污染低于检测极限值时,样本中仍然包含了尼古丁的检测值,这个检测值就等于最低极限值。被这项研究中的这个问题启发,我随意创建了一个人工数据集。尼古丁污染水平的日志被假定为正常。在这里,lognlevel包含尼古丁含量。用于模拟日志尼古丁含量的参数,删失数据是μ=ln(5),σ=2.5,左删失数据为0.1。我们开始绘制直方图。
直方图左侧有一个尖峰,因为在检测极限以下的值被记录为等于极限值。计算样本的原始均值和标准偏差,将不会为潜在的未经审查的高斯分布提供适当的估计。
均值和标准偏差分别估计为1.68和2.4,而实际参数为ln(5) =1.61 和2.5。
使用Tobit账户审核
我们估计均值和标准偏差分布,并使用ll选项的tobit来考虑左删失值(如果审核极限值随观测值而变化,那么可以用intreg来代替)。
潜在的未经审核的分布估计的均值为1.62,标准差2.49. 我们把未经审核的分布叠加到直方图中:
潜在的未经审核的分布匹配直方图的一部分,左边尾部补偿审查点的尖峰。
总结
在抽样数据中,删失和截断是不同的两种现象。截断高斯抽样中潜在的人口参数可以用truncreg来估计。删失高斯抽样中潜在的人口参数要用intreg或tobit来估计。
结语
我们已经讨论了删失和截断的概念,也举例说明了这两个概念的意思。与本次讨论有关的要点如下:
本次讨论是基于高斯模型之上的,但是主要的概念可以扩展到任意的分布中。以上的例子在没有协变量的情况下拟合回归模型,因此,我们可以更好地可视化删失和截断分布的形状。然而,这些概念很容易扩展到协变量的回归框架中,并且特定观测值的期望值是协变量函数。
我们已经讨论过使用truncreg和tobit来处理删失和截断数据。但是这些命令也可以应用到非删失和非截断数据中,只要这些数据是特定分布中的人口抽样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25