京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细操作:正态转换的多种方法
一、正偏态分布资料
1、轻度正偏态分布
偏度值>0,偏度值为其标准误差的2-3倍,即Z-score=2~3,此时认为资料分布呈现轻度的正偏态分布,可以考虑对变量x取根号开平方的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = SQRT(x)
(SQRT为开平方根Square Root缩写)
2、中度正偏态分布
偏度值>0,偏度值为其标准误差的3倍以上,即Z-score>3,此时认为资料分布呈现中度的正偏态分布,可以考虑对变量x取对数来进行转换。可以取自然对数(ln)或以10为底的对数(log10)。
SPSS语句如下:
COMPUTE x_new = LN(x)
COMPUTE x_new = LG10(x)
注意:LG10的纠正力度较强,有时甚至会矫枉过正,将正偏态转换为负偏态,因此在进行正态转换后一定要对该变量再次进行正态性检验。
3、重度正偏态分布
对于两端波动比较大的数据资料,极端值可能产生较大的影响,此时可以考虑取倒数的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = 1/x
注意:根号下要求数据均为非负数(即≥0),对数要求数据均为正数(即>0),取倒数要求分母不为0, 如果变量x中出现上述情况,则需要先将其进行一定的转换,如x+K或K-x,再对其取根号、对数或倒数。其中K为一个常数,可以根据需要进行赋值,例如赋值为1,或取数据的最小值、最大值等。
二、负偏态分布资料
对于负偏态分布的数据资料,首先需要将负偏态资料进行反转,转换为正偏态,然后再参考正偏态分布资料的转换方法进行转换。
反转的方法:首先找出该数据系列的最大值max,用最大值+1,再减去每个数值
1、轻度负偏态分布
SPSS语句如下:
COMPUTE x_new = SQRT(max+1-x)
2、中度负偏态分布
SPSS语句如下:
COMPUTE x_new = LN(max+1-x)
COMPUTE x_new = LG10(max+1-x)
3、重度负偏态分布
SPSS语句如下:
COMPUTE x_new = 1/(max+1-x)
三、SPSS操作:函数转换法
以分析某人群甘油三酯(TG)的分布特征为例。
1、对TG分布进行正态性检验
采用上期介绍的Explore方法:Analyze→Descriptive Statistics→Explore
结果显示:偏度值为1.314>0,峰度值为1.596>0,偏度Z-score=1.314/0.172 = 7.640>3,Kolmogorov–Smirnov和Shapiro-Wilk检验P值均<0.001,从直方图也可以直观的看出TG在该人群中的分布呈现中度正偏态分布特征。
2、对TG进行正态转换
根据以上正态性检验结果,拟采用取对数的方法进行正态转换,以Log10为例。
(1) 选择Transform → Compute Variable
(2) 在Target Variable框中输入一个新的变量名,作为数据转换后的变量名,此处设定为TG_new
(3) 在Function group中选择Arithmetic,在Functions and Special Variables中双击Lg10,此时在Numeric Expression框中显示LG10(?)
(4) 从变量列表中双击TG,此时在Numeric Expression框中显示LG10(TG)
(5) 点击OK完成操作
3、对转换后的TG_new再次进行正态性检验
(1) 在结果输出的Descriptives表格中显示,偏度值为0.204≈0,峰度值为-0.338≈0,偏度Z-score=0.204/0.172=1.186<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和0.272,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的TG_new服从正态分布。
四、SPSS操作:正态得分法
对于初学者在初学时无法很好掌握数据资料分布特征的情况下,SPSS提供了一种通过计算正态得分的方法来实现正态转换。
1、操作过程
选择Transform→Rank Cases,将TG选入Variable(s)框中
点击Rank Type选项框,取消默认勾选的Rank,勾选Normal scores选项
在Proportion Estimation Formula下有4种方法可供选择,默认Blom方法,其他方法也可以进行尝试。点击OK完成操作。
2、结果解读
程序运行后在变量列表中多出了一个名为NTG的新变量,即为计算的正态得分,采用Explore方法对NTG进行正态性检验以验证转化效果。
(1) 在结果输出的Descriptives表格中显示,偏度值为0.001≈0,峰度值为-0.124≈0,偏度Z-score=0.001/0.172=0.006<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和1.000,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的NTG服从正态分布。
五、注意事项
1、不是任何非正态数据都可以进行正态转换,若有把握认为数据的总体分布是正态的时候才可以去做正态转换。如果通过变量转换的方法依然无法将数据转化为正态分布的话,就不再适用于T检验、方差分析等方法了,此时可以应用前期介绍过的非参数检验的方法来进行分析,例如Wilcoxon检验和Mann-Whitney U检验方法等。
2、在进行T检验、方差分析等方法时,要求每组数据均呈正态分布,因此当出现某一组数据正态,另一组数据非正态时,需要对两组数据同时进行转换。
3、在进行相关分析或线性回归时,要求变量间存在线性关系,如果因变量与某个自变量之间呈现出曲线趋势,此时转换的变量可以是自变量,也可以是因变量,或者两者均可。如果进行了变量变换,则应当重新绘制散点图,以保证线性趋势在变换后仍然存在。
4、在对线性回归模型进行解释时,如果使用函数转换的方法对变量进行了转换,则解释时应按照转换后的变量给予解释,或者可以根据转换时使用的函数关系,倒推原始自变量对原始因变量的效应大小。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17