
SPSS分析技术:判别分析
在数据处理中,有这样一种情况:现在已经有若干样本被正确地分类了,但不清楚分类的依据是什么。同时,未来还会有大量的未被分类的样本,需要按照上述规则判定这些样本的所属类别。为此,需要根据已被正确分类的样本及其属性,进行数据分析,找出影响样本归类的关键因素,甚至获得一个判定系数;然后依据判定系数,对未来样本进行判别。判别分析是为了解决未来个案归属问题而提出的一种数据分类技术,它基于已有的分类个案寻求有效的判别规则,并借助判别规则对未来个案的归属进行判定。
判别分析基于已有的个案及其分类情况(已有类别号),寻求能够决定个案类别归属的判定函数式,然后借助判定函数来对未归类个案实施判定。在针对个案的判别分析中,判别函数的质量直接影响到判定的正确率,因此寻求优质的判定函数对于判别分析的正确与否至关重要。
判别分析的价值主要体现在两个方面:
让未来个案自动归类或预测其可能的类别;
修正当前已归类个案中的不严谨结论;
基于已分类的部分个案开展分析并最终获得判别函数式,然后再依据判别函数式重新对已经分类个案进行判断,可以检查判别函数式的质量。如果判定值与原始类别号的吻合度较高,达到85%以上,则表示判别函数式有效,那么可以借助这个判别函数式对未来个案进行分类。与此同时,还可进一步检查在已有个案中,判定值与原始类别号不能吻合的那些个案,看看它们的归类是否存在问题。
两种判别方式
在SPSS中,判别分析的实现共有两种思路,分别是费舍尔(Fisher)判别法和贝叶斯(Bayes)判别法。
Fisher判别法
Fisher判别法是一种基于多维坐标系的判定方式。如果待研究个案被分为K类,那么系统可创建一个K-1维的坐标系,每个类别的中心都是坐标系中的一个点,被称之为质心点。每一个个案都可以表示为K-1个数值构成的坐标点,这个坐标点距离那个质心点更近,就归类到那个类别之中。
例如,将一个个案集分为三类,如果采用Fisher判别法就需要构成一个二维的平面直角坐标系,在这个坐标系中有3个质心点。执行Fisher判别分析后,系统会创建两个函数式,分别可以计算出每个个案对应的X坐标和Y坐标,然后通过计算这个点与每个质心点的距离,找到与当前点距离最小的质心点,从而确定当前个案的归属。
Bayes判别法
Bayes判别法的基本思路是:直接为每个类别产生一个判别函数式。如果原始个案被分为K类,则直接产生K个函数式。对于待判定类别的个案,直接把该个案各属性的取值代入到每个判别函数式中,那个函数式的值最大,该个案就被划归到那个类别中。
例如,某原始个案集被分为4类,则分别产生了Y1~Y4四个函数式。对于待分类的个案H,可以把H的各个属性值分别代入到函数式Y1~Y4中,然后比较4个数值的大小。假设最终结果是Y3最大,那么这个个案就属于第3类。
自变量筛选
与多元线性回归分析相似,判别函数式也是一组包含多个自变量的多元线性方程。因此在设计判别函数式时,同样存在着对多个自变量的进入判定与筛选问题。有下面几种自变量筛选的方式:
1、使用全部自变量法;把用户提供的所有自变量都直接纳入到判定函数式中,无论这些自变量对函数式的作用力到底有多大。这个方法是系统默认的方法。
2、使用步进方法;让自变量逐个尝试进入函数式,如果进入到函数式中的自变量符合条件,则保留在函数式中,否则,将从函数式中剔除。使用步进方法,对自变量的筛选方式。使用步进方法,对自变量的筛选方式,又包括以下几种:
威尔克斯lambda值法:它是组内平方和与总平方和之比,用于描述各组的均值是否存在显著差别,当所有观测组的均值都相等时,Wilks’lambda值为1,;当组内变异与总变异相比很小时,表示组件变异较大,表示组间变异较大,系数接近于0。
未解释方差法:它指把计算残余最小的自变量优先纳入到判别函数式中。
马氏距离法:它把马氏距离最大的自变量优先纳入到判别函数式中。
最小F比率法:它把方差差异最大的自变量优先纳入到判别函数中。
劳氏增值法:它把劳氏统计量V产生最大增值的自变量优先纳入到判别函数中。
范例分析
现在有三种不同种类的花生,记录它们的质量、宽度和长度,制成统计表。每种类型都有20个样本,共60个样本。根据不同种的花生特征,建立鉴别不同种花生的判别方程。
分析步骤
1、选择菜单【分析】-【分类】-【判别】。将类型变量选为分组变量,将质量、宽度和长度选为自变量。自变量进入方法选择步进法。
2、选择【保存】项,将预测组成员和判别分数选中。点击继续,然后点击确定。
结果分析
1、输出判别结果,如下图所示,Dis_1表示判定类别,Dis1_1和Dis2_1分别表示将个案值代入到自动生成的两个判定函数中得到的结果。
2、步进方式筛选自变量的情况;
从上图可知,质量、宽度和长度都被纳入到函数式中,且显著性都为0.000,表示三个自变量的影响力是显著的。
上图是对三个变量步进式进入方程的结果:产生三个模型,序号为1~3。三种模型的Lambda值都远小于1,而且第三个模型的lambda值仅为0.001,显著性为0.000。因此,从总体上说,这三个模型都是有效的,以第三个模型为最终结果。
3、典型判别式函数摘要;
在特征值表格中,本次判别分析共生成两个判别函数式,函数式1和函数式2的特征值都大于1;下表的lambda值都远小于1,显著性都为0.000,说明两个函数式的作用都非常强。
4、函数系数及组质心坐标表格
左边的表格式生成的两个函数式的系数。右边的表格表示三个组质心的坐标。对于标准化的判别函数式,其自变量的系数可以直观地反映该自变量对最终判定的影响力水平。但需要注意的是,在具体的应用当中,不能直接把个案的各个属性的原始值代入到标准化函数式中使用。只有已经标准化的自变量属性值才可应用于标准化的判别函数式。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30