
SPSS分析技术:探索性分析;强大的综合性描述性统计模块
SPSS还提供了一种综合性的数据描述工具:探索性分析,它能够一次性将上述分析结果和其它更详细的分析结果呈现出来,不能能够输出数据结果,还能提供各种直观统计图。
探索性分析
生活中,高空作业一般都会借助外物如吊车等工具帮住自己达到目标,而统计学中也一样,在对数据的基本特征有所了解,需要对数据进行更为细致和深入的描述性观察分析,这时候就需要绘制统计图来辅助分析,这样就使得数据分析更为深入、细致和全面。
探索性分析项目
描述性统计结果。输出各种描述性统计指标,例如,均值、方差、标准差等。
正态分布检验。通过对数据的进一步探索分析,验证其是否符合正态分布,进而确定能否使用正态分布数据的分析方法进行分析。常用的正态分布验证是Q-Q概率图。
方差齐性检验。通过Levene检验比较各组数据之间的方差是否相等,以此判断数据的离散程度是否存在差异。若Levene检验得到的显著性水平小于0.05,就拒绝方差相同的假设。
寻找数据中的奇异值。在数据整理输入过程中,对出现某些影响分析结果的奇异值进行删除或保留。
探究性分析结果的图形描述
探究性分析增加了图形的方式对数据的分布给予直观呈现。图形包括茎叶图、直方图、箱图和Q-Q概率图。茎叶图:是用以描述连续变量的一种手法,主要包括频率、茎和叶三个部分。其中,茎和叶分布代表数据的整数部分和小数部分。茎代表观测值的十位数,叶对应观测值的个位数。一个个位数代表一个观测值,每一行左边的频率就是该行对应的个案数。每个茎叶图的底部还注明了茎宽和每叶代表的个案数。数据的值即为茎叶组成的数值结合乘以茎宽。茎叶图既保留了数据的频率分布,也保存了原始数据,是探究性分析常用方法之一。
直方图:用于对连续变量数据的观察。它是以区间作为水平轴,以各个区间的频率作为相应条块的高度来绘制出统计图。从直方图上可以直观看出数据的分布状况等。
箱图:是表现五数(最小值、最大值、中位数、第一个四分位数、第三个四分位数)的图形形式,其中矩形为箱图的主题,两个四分位数之差为箱长,也称内四分位限。箱体部分包含全体数据约50%的数值,箱体的上中下三条平行线分别表示75%、50%(中位数)和25%分位数。纵贯箱体中间的竖线称为触须线,触须线上下两端的横线代表该组变量数值的最大值(97.5%)和最小值(2.5%)。箱图在比较两个或多个变量时尤其有用,它还可用于判别极端值的存在。如果箱图中有异常值,用【。】表示,如果有极端异常值,则用【*】表示。
案例分析
现有某校451名学生的体检数据,测量了身高、体重、肺活量、血压、心率等指标。对所有学生的身高数据进行探索性分析,进一步了解该校学生的身高情况。
分析步骤
1、选择菜单【分析】-【描述统计】-【探索】。将变量身高选入因变量列表;将性别选入因子列表;将编号变量选入标注个案。
因变量指待分析的数据变量;
因子列表指分类变量,即按照因子变量对因变量进行分类;
标注个案指对异常值的标注信息;
本案例将身高变量选为因变量,即待分析数据变量;将年龄变量选为因子变量,即按照年龄对身高数据进行分类;标注个案选择编号变量,在统计图上,异常值将标注其编号。
2、统计指标及统计图选择。
为了展示探索性分析的所有功能,我们将所有的统计指标及统计图类型都进行勾选。其它的选项比较简单,这里需要对伸展与级别Levene检验进行说明。
3、点击【继续】,然后点击【确定】,输出结果。
结果解读
1、个案处理摘要;从下表可以知道每个年龄的有效个案数、缺失个案数和总计个案数。
2、描述统计摘要表;由于年龄跨度较大,所以在这里只展示10岁的学生数据。包括了所有的描述性统计指标。
3、M-估计值;
当数据中存在极端值和奇异值时,M估计值是更好的平均值和中位数的替代者,能够更好的反映数据的集中程度。M估计采取的办法是给每个个案数值增加权重,这样能够有效的减少极端值和异常值对平均值和中位数的影响,从而让分析者更好的了解手中的数据。表中有四个M估计值,它们的区别在于权重不同。如果描述统计中,平均值和中位数与M估计表的有很大出入,说明原始数据中存在极端值。
4、百分位数;表中显示每个年龄数据的不同百分位的身高。
5、正态分布检验结果;探索性分析采用了两种正态分布检验方法:K-S检验和S-W检验。
结果展示了每个年龄学生的身高是否服从正态分布。
6、各种统计图形,这里以10岁学生群体的统计图为例。输出结果中包括了直方图、茎叶图、Q-Q图、去势Q-Q图以及箱图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29