京公网安备 11010802034615号
经营许可证编号:京B2-20210330
《数据分析专项练习题库》
《CDA数据分析认证考试模拟题库》
《企业数据分析面试题库》
CDA LEVEL Ⅱ_模拟题:
1、答案(D)
在使用历史数据构造训练集(Train)集、验证(Validation)集和检验(Test)时,以下哪个样本量分配方案比较适合?
A.训练50%,验证0%,检验50%
B.训练100%,验证0%,检验0%
C.训练0%,验证100%,检验0%
D.训练60%,验证30%,检验10%
2、答案(A)
一个累积提升度曲线,当深度(Depth)等于0.1时,提升度为(Lift)为3.14,以下哪个解释正确?
A.根据模型预测,从最高概率到最低概率排序后,最高的前10%中发生事件的数量比随机抽样的响应率高3.14
B.选预测响应概率大于10%的样本,其发生事件的数量比随机抽样的响应率高3.14
C.根据模型预测,从最高概率到最低概率排序后,最高的前10%中预测的精确度比随机抽样高3.14
D.选预测响应概率大于10%的样本,其预测的精确度比随机抽样高3.14
3、答案(C)
在使用历史数据构造训练(Train)集、验证(Validation)集和检验(Test)集时,训练数据集的作用在于
A.用于对模型的效果进行无偏的评估
B.用于比较不同模型的预测准确度
C.用于构造预测模型
D.用于选择模型
4、答案(D)
在对历史数据集进行分区之前进行数据清洗(缺失值填补等)的缺点是什么?
A.增加了填补缺失值的时间
B.加大了处理的难度
D.无法对不同数据清理的方法进行比较,以选择最优方法
5、答案(C)
A.运用验证数据集中变量的统计量对训练集中的变量进行数据清洗
B. 运用验证数据集中变量的统计量对验证集中的变量进行数据清洗
C. 运用训练数据集中变量的统计量对验证集中的变量进行数据清洗
D.以上均不对
6、答案(B)
当一个连续变量的缺失值占比在85%左右时,以下哪种方式最合理
A.直接使用该变量,不填补缺失值
B.根据是否缺失,生成指示变量,仅使用指示变量作为解释变量
C.使用多重查补的方法进行缺失值填补
D.使用中位数进行缺失值填补
7、答案(B)
构造二分类模型时,在变量粗筛阶段,以下哪个方法最适合对分类变量进行粗筛
A.相关系数
B.卡方检验
C.方差分析
D.T检验
8、答案(A)
以下哪个方法可以剔除多变量情况下的离群观测
A.变量中心标准化后的快速聚类法
B.变量取百分位秩之后的快速聚类法
C.变量取最大最小秩化后的快速聚类法
D.变量取Turkey转换后的快速聚类法
9、答案(C)
以下哪种变量筛选方法需要同时设置进出模型的变量显著度阀值
A .向前逐步法
B. 向后逐步法
C. 逐步法
D. 全子集法
10、答案(A)
A.R方
B.调整R方
C.AIC
D.BIC
11、[答案B.]
将复杂的地址简化成北、中、南、东四区,是在进行?
A. 数据正规化(Normalization) B. 数据一般化(Generalization) C. 数据离散化(Discretization) D. 数据整合(Integration)
12、【答案(A)】
当类神经网络无隐藏层,输出层个数只有一个的时候,倒传递神经网络会变形成为?
A. 罗吉斯回归 B. 线性回归 C. 贝氏网络 D. 时间序列
13、[答案B.]
请问Apriori算法是用何者做项目集(Itemset)的筛选 ?
A. 最小信赖度(Minimum Confidence)
B. 最小支持度(Minimum Support)
C. 交易编号(Transaction ID)
D. 购买数量
14、[答案B.]
有一条关联规则为A → B,此规则的信心水平(confidence)为60%,则代表:
A. 买B商品的顾客中,有60%的顾客会同时购买A
B. 买A商品的顾客中,有60%的顾客会同时购买B
C. 同时购买A,B两商品的顾客,占所有顾客的60%
D. 两商品A,B在交易数据库中同时被购买的机率为60%
15、【答案(B)】
下表为一交易数据库,请问A → C 的支持度(Support)为:
A. 75% B. 50% C.100% D. 66.6%
|
TID |
Items Bought |
|
1 |
A,B,C |
|
2 |
A,C |
|
3 |
A,D |
|
4 |
B,E,F |
16、【答案(D)】
下表为一交易数据库,请问A → C 的信赖度(Confidence)为:
A. 75% B. 50% C.100% D. 66.6%
|
TID |
Items Bought |
|
1 |
A,B,C |
|
2 |
A,C |
|
3 |
A,D |
|
4 |
B,E,F |
17、[答案D.]
倒传递类神经网络的训练顺序为何?( A:调整权重; B:计算误差值; C:利用随机的权重产生输出的结果)
A. BCA B. CAB C. BAC D. CBA
18、[答案C.]
在类神经网络中计算误差值的目的为何?
A. 调整隐藏层个数
B. 调整输入值
C. 调整权重(Weight)
D. 调整真实值
19、[答案A.]
以下何者为Apriori算法所探勘出来的结果?
A. 买计算机同时会购买相关软件
B. 买打印机后过一个月会买墨水夹
C. 买计算机所获得的利益
D. 以上皆非
20、[答案D.]
如何利用「体重」以简单贝式分类(Naive Bayes)预测「性别」?
A. 选取另一条件属性
B. 无法预测
C. 将体重正规化为0~1之间
D. 将体重离散化
21、[答案B.]
Naive Bayes是属于数据挖掘中的什么方法?
A. 分群 B. 分类 C. 时间序列 D. 关联规则
22、[答案B.]
简单贝式分类(Naive Bayes)可以用来预测何种数据型态?
A. 数值 B. 类别 C. 时间 D. 以上皆是
23、[答案B.]
如何以类神经网络仿真罗吉斯回归(Logistic Regression)?
A. 输入层节点个数设定为3
B. 隐藏层节点个数设定为0
C. 输出层节点个数设定为3
D. 隐藏层节点个数设定为1
24、[答案B.]
请问以下何者属于时间序列的问题?
A. 信用卡发卡银行侦测潜在的卡奴
B. 基金经理人针对个股做出未来价格预测
C. 电信公司将人户区分为数个群体
D. 以上皆是
25、[答案D.]
小王是一个股市投资人,手上持有某公司股票,且已知该股过去历史数据如下表所示,今天为预测2/6的股价而计算该股3日移动平均,请问最近的3日移动平均值为多少?
|
日期 |
股价 |
|
2/1 |
10 |
|
2/2 |
12 |
|
2/3 |
13 |
|
2/4 |
16 |
|
2/5 |
19 |
A. 11 B. 13 C. 14 D. 16
26、[答案C.]
下列哪种分类算法的训练结果最难以被解释?
A. Naive Bayes
B. Logistic Regression
C. Neural Network
D. Decision Tree
27、[答案B.]
数据遗缺(Null Value)处理方法可分为人工填补法及自动填补法,下列哪种自动填补法可得到较准确的结果?
A. 填入一个通用的常数值,例如填入"未知/Unknown"
B. 把填遗缺值的问题当作是分类或预测的问题
C. 填入该属性的整体平均值
D. 填入该属性的整体中位数
1、(AB)
对于决策类模型、以下哪些统计量用于评价最合适?
A.错分类率
B.利润
C.ROC指标
D.SBC
2、(BD)
对于估计类模型、以下哪些统计量用于评价最合适?
A.错分类率
B.极大似然数
C.ROC统计量
D.SBC
3、(AB)
以下哪个变量转换不会改变变量原有的分布形式
A.中心标准化
B.极差标准化
C.TURKEY打分
D.百分位秩
4、(AB)
连续变量转换时,选取百分位秩而不选用最大最小秩的原因
A.避免模型在使用时,值域发生明显变化
B.避免输入变量值域变化对模型预测效果的影响
C.避免输入变量的异常值影响
D.是转换后的变量更接近正态分布
5、(BC)
构造二分类模型时,在变量粗筛阶段,以下哪两个方法最适合对连续变量进行粗筛
A.皮尔森(Pearson)相关系数
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到社会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ + Level Ⅱ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
CDA Level II >了解更多<
▷ 报考条件:获得CDA Level Ⅰ认证证书;
▷ 考试时间:随报随考。
CDA Level III >了解更多<
▷ 报考条件:获得CDA Level Ⅱ认证证书;
▷ 考试时间:一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18