京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Keras 是基于 Theano 或 者TensorFlow 的一个深度学习框架,其设计源于Torch,编程语言用 Python ,是一个功能强大、内容抽象,高度模块化的神经网络库,能够支持 GPU 和 CPU。目前tensorflow已经将keras合并到了自己的主代码中,我们可以直接tf.keras就能调用其中的工具库了。
一、 Keras设计原则
a)用户友好:Keras提供一致而简洁的API, 大大降低了一般应用下用户的工作量,并且,Keras可以提供清晰和具有实践意义的bug反馈。
b)模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。
c)易扩展性:只要仿照现有模块编写出新的类或者函数,就能够非常简单的添加新模块。这种快捷性、便利性,能够让Keras在先进的研究工作方面有更突出的表现。
d)与Python协作:Keras并没有单独的模型配置文件类型,模型使用python代码,这使得Keras更紧凑和更易debug,扩展更为便捷。
二、keras安装
在进行keras安装之前,需要需要确保TensorFlow,Theano,CNTK已经安装完成。建议使用TensorFlow后端。如果计划在GPU上运行keras,还可以选择依赖项cuDNN。
1、打开dos窗口,在命令行中输入:pip install keras
2、下载完成后,进入python环境,输入import keras,输出Using Tensorflow backend即表示安装成功。
三、快速上手 Keras
模型,是一种组织网络层的方式,它是Keras 的核心数据结构。Keras 中主要的模型有: Sequential 模型,Sequential 是一系列网络层按顺序构成的栈。
Sequential 模型如下:
from keras.models import Sequential model = Sequential()
将一些网络层通过 .add() 堆叠起来,就构成了一个模型:
from keras.layers import Dense, Activation
model.add(Dense(units=64. input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))
完成模型的搭建后,我们需要使用 .compile() 方法来编译模型:
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
模型编译时必须指明损失函数和优化器。Keras 的核心理念就是简便快捷,操作容易。用户可以根据自己的实际需要定制自己的模型、网络层,甚至修改源代码。比如,我们使用自定义的 SGD 优化器:
from keras.optimizers import SGD model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01. momentum=0.9. nesterov=True))
模型编译完成之后,我们在训练数据上按 batch 进行一定次数的迭代来训练网络:
model.fit(x_train, y_train, epochs=5. batch_size=32)
如果我们采用手动方法,将一个个 batch 的数据送入网络中训练,需要使用:
model.train_on_batch(x_batch, y_batch)
随后,我们可以用这一行代码来评估模型,确定模型的指标是否能够满足我们的要求:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
或者,我们可以使用此模型,预测新数据:
classes = model.predict(x_test, batch_size=128)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08