
NLP(Natural Language Processing)自然语言处理是数据科学领域的一个非常重要的分支,它包含了,以一种高效的方式去分析,理解并从文本中提取信息等重要过程,终极目标是让计算机拥有自然语言处理交际能力。通过利用NLP及其相关组件,可以将大量的文本数据组织起来,以此来执行大量的自动化任务,并用于各种问题的解决,例如自动摘要,命名实体识别,情感分析,关系提取,语音识别、机器翻译和主题分割等。
NLP自然语言处理和计算机语言学,这两者在本质上是一样的,横跨了计算机科学、语言学、人工智能学科等学科。
一、NLP步骤
1、形态处理:
目的为:分割整个输入的文本,形成各种符号集合。这些符号分别与段落、句子及词汇等一一对应。
例:“uneasy”—>“un-easy”。这里“uneasy”就被分割成两个子词符号“un”和“easy”
2、语法分析:
目的为:a、检查句子,确定句式是否合理;b、把句子分解成一个结构,此结构能够将不同单词之间的句法关系显示出来。
例:“The school goes to the boy”这样的会无法通过句法分析器以及句法解释器。
3、语义分析:
确定输入文本的准确含义,或者找出输入文本在字典中的意思。目的为,检查文本是否有意义。
例:“Hot ice-cream”无法通过语义分析器。
4、语用分析:
语用分析简单地拟合实际的对象/事件,这些对象/事件存在于给定的上下文中,其中对象引用是在最后阶段(语义分析)获得的。
例如:“Put the banana in the basket on the shelf”这句话可以有两种语义解释:a把篮子里的香蕉放到书架上;b把香蕉放到书架上的篮子里。语用分析器能够结合上下文在这两种解释之间做出选择。
二. NLP的基本方法
1.基于规则的方法
研究人员,例如如语言学家,通过语言规律的总结,从而形成规则形态的知识库;
研制语言处理算法,并利用这些规则处理自然语言;
结合处理结构,进行规则调整,优化处理效果。
存在的问题:并不能总结出所有规则
2.基于统计的方法
建立能够反应语言使用状况的语料库;
研究人员对自然语言进行统计建模;
利用统计技术或者机器学习技术,借助语料库来进行语言模型的训练;
根据所得到的模型,设计相应算法对语言进行处理;
根据处理效果,优化模型,提高处理能力。
存在的问题:数据稀疏问题也就是长尾效应
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08