持证人简介:CDA持证人惠凯,2019年毕业,原某头部酒企数字化项目项目负责人,现任某科技公司数据产品经理。 实战。 01快消企业的业务模式 02快消企业数据应用痛点 痛点一:数据基础薄弱 在快速消费品行 ...
2024-09-12大部分民众对平均工资、平均年终奖、人均GDP是不买账的,为什么?这就是犯了统计上滥用平均值的错误。 01滥用平均值 原因:平均值的信息量有限;不能告诉你分布形态和波动;平均值容易被极端值拉偏;不同性质的数 ...
2024-09-11自然语言处理工作中,在自动建构关键词(非控制字汇)时,经常采用的方法是? A. Controlled Vocabulary(控制字汇) B. Inversion of Terms(逐项反转 ) C. Inverse Document Frequency (IDF) D. Full-Text ...
2024-09-11分析人员为决策者提供业务分析报告作为决策依据使用,不同场景下分析报告的软件载体也要有所区别,在会议上使用的业务分析报告载体是 A. Word B. Excel C. Power BI D. PPT 数据分析认证考试介绍: ...
2024-09-11自然语言处理工作中,在自动建构关键词(非控制字汇)时,经常采用的方法是? A. Controlled Vocabulary(控制字汇) B. Inversion of Terms(逐项反转 ) C. Inverse Document Frequency (IDF) D. Full-Text ...
2024-09-11下列哪种说法关于IDF逆向文件频率是正确的? A. IDF值越大,说明单词在文档中出现的次数越多 B. IDF值越大,说明单词在文档中出现的次数越少 C. IDF值越大,说明单词在文档集合中出现的次数越多 D. IDF值越 ...
2024-09-10词袋模型(英语:Bag-of-words model)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(Bag of Word, BoW)的说法正确的是? A. 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即 ...
2024-09-10关于词嵌入模型,以下说法错误的是? A. GloVe模型属于词嵌入模型 B. Word2Vec模型属于词嵌入模型 C. 词袋模型属于词嵌入模型 D. 词嵌入模型基本假设是出现在相似的上下文中的词含义相似 数据分析 ...
2024-09-10在当今"人工智能"迅猛发展的时代,毕业生已经面临着前所未有的就业压力和竞争环境。人工智能的迅速普及和应用,不仅对传统产业产生了深远的影响,也使得各行业对与其相关技能的需求急剧上升。对于即将步入职场 ...
2024-09-10在当今数字经济快速发展的时代,商务数据分析与应用专业的毕业生在职场中具有重要的市场需求和广泛的应用前景。然而,在面临各类工作选择时,如何有效应对并提升自身竞争力,成为这一专业毕业生亟需解决的问题 ...
2024-09-10在大数据和现代会计相结合的背景下,如何在职业生涯中寻找前景广阔的岗位成为了当前许多毕业生和从业人员关心的热点问题。大数据技术对会计行业的影响日益深远,推动了会计专业从传统数据处理转向智能化、数据 ...
2024-09-10随着大数据时代的到来,数据分析师这一职业日益显示出其重要性。企业在竞争中越来越依赖数据驱动的决策,这使得数据分析师成为关键角色。然而,尽管该岗位需求量大,但现有的研究对数据分析师岗位的现状和需求 ...
2024-09-10随着数据量的不断增加和数据处理、分析的重要性越来越突出,数据分析作为一门跨学科的新兴领域,正在吸引着大量的学生和从业人员。然而,当前大多数高校的教育体系并没有完全适应这个变化,许多学生在毕业后发 ...
2024-09-10三本院校的“人工智能”专业毕业生在职业发展过程中面临诸多挑战,特别是在就业市场竞争激烈的背景下,获取诸如CDA(Certified Data Analyst)证书这样的专业认证显得尤为重要。这种认证不仅是对专业技能的认可, ...
2024-09-10数据分析是现代商业运营和科学研究中越来越关键的一个领域。随着数据量的迅速增加和数据复杂性的提升,数据分析技能的重要性在不断上升。在这种背景下,如何提升个人的数据分析能力已成为一个重要的研究方向。 ...
2024-09-10在当今信息化与智能化浪潮的推动下,传统工业领域正在经历一场前所未有的变革。这其中,大数据技术的应用为工业生产和管理带来了新的机遇。然而,尽管工业大数据分析的潜力巨大,许多传统工业岗位仍然难以充分 ...
2024-09-10数据分析在现代信息社会中扮演着至关重要的角色。随着互联网的迅猛发展和信息技术的广泛应用,数据的产生速度和体量都呈现出爆炸式增长,如何有效地解析这些海量数据变得尤为关键。数据分析不仅能够帮助企业提 ...
2024-09-10研究的重要性在于,现代企业的经营状况直接影响到其在市场中的竞争力和可持续发展。然而,企业在全球化背景下面临诸多挑战,如市场变化、资源整合、技术进步等。对公司经营现状的深入调研,不仅有助于内部管理层做 ...
2024-09-10信息管理与信息系统专业在当前信息技术快速发展的时代,越来越受到社会和企业的重视。信息管理与信息系统专业毕业生在就业市场上具有较强的竞争力,但在面对多样化的职业选择和不断变化的行业需求时,考取相应 ...
2024-09-10随着全球化进程的加快和信息技术的飞速发展,现代职场竞争愈加激烈。特别是对于那些工作3-5年的年轻人,他们面临着职场的多重挑战,包括职场发展瓶颈、职位升迁困难以及技能更新换代等问题。因此,研究如何提高这 ...
2024-09-10PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08