在机器学习中,训练神经网络是一个非常重要的任务。通常,我们会将数据集分成训练集和验证集,用于训练和测试我们的模型。在训练神经网络时,我们希望看到训练集的损失值(loss)不断下降,这表明随着时间的推移, ...
2023-03-30在MySQL高并发场景下,重复插入是一个常见的问题。当多个并发请求同时向数据库中插入相同的数据时,就容易出现重复插入的情况。这时候需要采用一些策略来保证数据的唯一性。 使用唯一索引 在MySQL中,可以使用唯一 ...
2023-03-30在 TensorFlow 中,Dense 是一种常用的层类型,用于构建神经网络中的全连接层。它是一个密集连接的神经网络层,每个神经元与上一层的所有神经元相连。本文将从以下几个方面来解释 TensorFlow 中的 Dense 层。 神经 ...
2023-03-29李克特量表(Likert scale)是一种常见的调查问卷设计方法,用于评估受访者对某种观点、态度或信念的赞同程度。该量表通常由若干个陈述性语句组成,被要求在一个有序的数字序列上选择自己的回答。 SPSS是一种功 ...
2023-03-29在R语言中,计算每组数据的平均值是一项非常基础的任务。这可以帮助人们理解其数据集的趋势和特征。在本文中,我将向您展示如何使用R语言计算每组数据的平均值。 首先,我们需要一个数据集。为了演示目的,我将使用R ...
2023-03-29在MySQL中,我们经常需要查询大量数据并进行分页显示。但是当数据量变得很大时,分页查询会变得越来越慢,这会给用户带来不好的体验。那么如何解决这个问题呢? 1.使用索引优化查询 当我们在数据库中查询数据时,它 ...
2023-03-29在神经网络中,激活函数是非常重要的组成部分。它们将输入信号转换为输出信号,并且对神经网络的性能和训练速度有着很大的影响。sigmoid和tanh是两种最常见的激活函数之一,它们在很多方面都非常相似,但是它们也有 ...
2023-03-29在R语言中,要输出高dpi(dots per inch)图片,需要使用一些特定的函数和参数。本文将提供一个基本的教程,帮助你了解如何使用R语言输出高dpi图片。 首先,我们需要创建一个图形并将其导出为高dpi格式的图片。为此 ...
2023-03-29神经网络是一种模拟生物神经系统的计算模型,它具有自适应性和学习能力,可以通过学习来提高其对特定任务或数据的准确性和泛化能力。但是,在神经网络中存在一个严重的问题,那就是灾难性遗忘。 灾难性遗忘是指神经 ...
2023-03-29Linux是一种自由、开源的操作系统,广泛用于服务器和嵌入式设备等领域。在使用Linux时,经常需要使用update和upgrade这两个命令来更新系统。本文将详细介绍update和upgrade的含义及其区别。 一、update命令 ...
2023-03-29图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...
2023-03-29COX回归分析和nomogram是生存分析领域中常用的两种分析方法。本文将介绍如何使用R语言进行COX回归分析和nomogram制作。 一、COX回归分析 COX回归分析是一种生存分析方法,可以用来研究一个或多个预测因素(也称为协 ...
2023-03-29深度学习和神经网络是人工智能领域中的两个重要概念,它们在很多方面有着相似之处,但也存在一些区别。本文将从定义、结构、应用等方面来探讨深度学习与神经网络的区别。 定义 深度学习是一种基于人工神经网络的机 ...
2023-03-29在介绍XGBoost中的min_child_weight之前,先简要介绍一下XGBoost。 XGBoost是一种广泛使用的机器学习算法,被用于各种数据科学任务,例如分类、回归等。它是“Extreme Gradient Boosting”的缩写,是一种决策树 ...
2023-03-28LSTM模型是一种用于处理时序数据的深度学习模型,它能够有效地捕捉时间上的依赖关系。然而,在一些应用场景中,单纯使用LSTM模型可能无法达到预期的效果,这时候可以考虑在LSTM模型后增加Dense(全连接)层来进一 ...
2023-03-28TensorFlow和Keras都是机器学习领域中的流行框架。它们都被广泛用于深度学习任务,例如图像分类、自然语言处理和推荐系统等。虽然它们都有相似的目标,即使让机器学习更加容易和高效,但是它们之间确实存在一些区别 ...
2023-03-28在使用Python的matplotlib库绘制图形时,我们常常需要控制坐标轴的单位长度。当x和y轴的比例不同,图形可能会被拉伸或者压缩,从而失真。本文将介绍如何通过设置坐标轴的纵横比例,使得x和y轴的单位长度相等。 ...
2023-03-28R语言是一种非常流行的数据分析和统计建模工具,它具有丰富的时间序列分析功能。本文将介绍在R语言中进行时间序列分析的一些基本概念和最常用的包。 时间序列分析基础知识 时间序列分析是指对随时间变化的数据进行建 ...
2023-03-28Requests和Scrapy都是用于爬取网页数据的Python库,它们各自有着自己的优势和适用场景。本文将会对这两个库进行比较和分析。 Requests Requests是一个非常流行的Python HTTP库,可以轻松地发送HTTP请求和处理响应。 ...
2023-03-28单因素方差分析(One-way ANOVA)是数据分析中常用的一种方法,它可以用于比较两个以上样本之间的差异性。在进行单因素方差分析时,我们需要满足以下条件:每组数据来自独立的样本,数据服从正态分布,各组数据的 ...
2023-03-28数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22