京公网安备 11010802034615号
经营许可证编号:京B2-20210330
异常值在数据分析和机器学习中起着至关重要的作用。它们可能源自测量错误、数据损坏,或者代表真实但罕见的事件。这种数据的存在可能会极大地影响我们的分析结果和模型准确性。因此,识别和处理异常值是我们必须认真对待的任务。
异常值(Outliers)指的是数据集中与其他观察值明显不同的数据点,可能比其他数据点更大、更小,或者位于整个数据分布之外。它们有时也被称为离群值或孤立值。处理这些异常值至关重要,因为它们可能扭曲统计分析结果、影响模型拟合,甚至增加误差。
异常值可能导致以下问题:
一旦发现异常值,我们可以采取以下策略进行处理:
处理异常值需要谨慎对待,结合业务背景和数据特点选择合适的方法。记住,正确处理异常值可以提高数据分析的准确性和模型的鲁棒性。
:类似于 Isolation Forest,通过构建随机切分树的方式来检测异常值。RRCF 添加了对数据点权重的考虑,能够更好地适应不平衡数据集。
One-Class SVM:支持向量机(SVM)的变种,专门用于检测单类别数据中的异常值。它寻找一个边界,将正常数据点包围在内部,从而确定异常值的位置。
DBSCAN:一种基于密度的聚类算法,可以识别具有相对高密度的区域作为簇,并将稀疏区域的点视为异常值。适用于非规则形状的数据集。
Elliptic Envelope:基于椭圆形拟合数据的方法,将位于椭圆外部的数据点视为异常值。适用于多元正态分布的数据集。
Mahalanobis Distance:利用马氏距离来判断数据点与数据集均值之间的偏差,超过一定阈值的数据点可以被认为是异常值。
选择合适的异常值处理方法取决于数据集的特性、业务需求和模型要求。在实际应用中,常常需要结合多种方法进行综合分析,以确保准确地识别和处理异常值,从而提高数据质量和模型效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05