京公网安备 11010802034615号
经营许可证编号:京B2-20210330
异常值在数据分析和机器学习中起着至关重要的作用。它们可能源自测量错误、数据损坏,或者代表真实但罕见的事件。这种数据的存在可能会极大地影响我们的分析结果和模型准确性。因此,识别和处理异常值是我们必须认真对待的任务。
异常值(Outliers)指的是数据集中与其他观察值明显不同的数据点,可能比其他数据点更大、更小,或者位于整个数据分布之外。它们有时也被称为离群值或孤立值。处理这些异常值至关重要,因为它们可能扭曲统计分析结果、影响模型拟合,甚至增加误差。
异常值可能导致以下问题:
一旦发现异常值,我们可以采取以下策略进行处理:
处理异常值需要谨慎对待,结合业务背景和数据特点选择合适的方法。记住,正确处理异常值可以提高数据分析的准确性和模型的鲁棒性。
:类似于 Isolation Forest,通过构建随机切分树的方式来检测异常值。RRCF 添加了对数据点权重的考虑,能够更好地适应不平衡数据集。
One-Class SVM:支持向量机(SVM)的变种,专门用于检测单类别数据中的异常值。它寻找一个边界,将正常数据点包围在内部,从而确定异常值的位置。
DBSCAN:一种基于密度的聚类算法,可以识别具有相对高密度的区域作为簇,并将稀疏区域的点视为异常值。适用于非规则形状的数据集。
Elliptic Envelope:基于椭圆形拟合数据的方法,将位于椭圆外部的数据点视为异常值。适用于多元正态分布的数据集。
Mahalanobis Distance:利用马氏距离来判断数据点与数据集均值之间的偏差,超过一定阈值的数据点可以被认为是异常值。
选择合适的异常值处理方法取决于数据集的特性、业务需求和模型要求。在实际应用中,常常需要结合多种方法进行综合分析,以确保准确地识别和处理异常值,从而提高数据质量和模型效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21