
t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检验。
总之这3个分布很有用,首次接触你可能理解不了,但没关系你知道很重要就行了,接着往下看,我们在介绍三大分布之前,先看一下正态分布和标准正态分布:
正态分布具有钟形曲线的特征,均值和标准差是其两个重要的参数。
import numpy as np
import seaborn as sns
mean = 3 # 均值
std = 4 # 标准差
size = 1000 # 生成1000个随机数
data = np.random.normal(mean, std, size=size)
sns.histplot(data, kde=True)
标准正态分布是一种特殊的正态分布,其均值为0,标准差为1。在统计学中,标准正态分布经常用于标准化数据或进行假设检验。
import numpy as np
import seaborn as sns
size = 1000 # 生成1000个随机数
data = np.random.standard_normal(size=size)
sns.histplot(data, kde=True)
t分布是一种概率分布,用于小样本情况下对总体均值的推断。当样本容量较小或总体方差未知时,使用T分布进行推断更准确。T分布的形状类似于正态分布,但尾部较宽。T分布的自由度(degrees of freedom)决定了其形状。
import numpy as np
import seaborn as sns
df = 10 # 自由度
size = 1000 # 生成1000个随机数
data = np.random.standard_t(df, size=size)
sns.histplot(data, kde=True)
F分布是一种概率分布,用于比较两个样本方差的差异。F分布常用于方差分析和回归分析中。F分布的形状取决于两个自由度参数,分子自由度和分母自由度。
import numpy as np
import seaborn as sns
dfn = 5 # 分子自由度
dfd = 10 # 分母自由度
size = 1000 # 生成1000个随机数
data = np.random.f(dfn, dfd, size=size)
sns.histplot(data, kde=True)
卡方分布是一种概率分布,用于检验观察值与理论值之间的拟合优度。卡方分布常用于拟合优度检验、独立性检验中。卡方分布的自由度参数决定了其形状。
import numpy as np
import seaborn as sns
df = 5 # 自由度
size = 1000 # 生成1000个随机数
data = np.random.chisquare(df, size)
sns.histplot(data, kde=True)
注:本节作为延伸阅读,初学者简单了解即可
十九世纪中叶至二十世纪初,有三位统计学届杰出代表: 皮尔逊( Pearson) 、戈塞特( Gosset) 、费希尔( Fisher) 表,他们是统计学三大分布的始创者。
皮尔逊(Pearson) 在创立拟合优度理论的过程中发现了 分布;
戈塞特( Gosset) 发现 分布的过程正是 小样本理论 创立的过程;
费希尔( Fisher) 在创立 方差分析 理论的过程中发现了 分布。
这便是著名的三大抽样分布包括: 分布、 分布和 分布
分布是由个相互独立的标准正态分布 的平方和确定的分布,记作 ~ ,即
分布的分子是一个 ,分母是自由度为 的 分布与自由度 的比值再开方确定的分布,记作 ~ ,即
分布是由两个 分布与其自由度比值的比值确定的分布 ,记 作 ~ ,即
三大分布的推导
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25