
还以为你被上节课的内容唬住了~终于等到你,还好没放弃!
本节我们将说明两个问题:总体均值 的区间估计和总体比例 的区间估计。
区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在“控制之中” ,也可以用来监控互联网领域各类数据指标是否在正常区间。
大样本的情况下
已知,
未知,
小样本的情况下
另外补充一个公式,样本量 这个了解就好,大部分情况下是不缺数据的,尽可能选数据量稍大些的数据。
把以上过程编写成Python的自定义函数:
import numpy as np
import scipy.stats
from scipy import stats as sts
def mean_interval(mean=None, sigma=None,std=None,n=None,confidence_coef=0.95):
"""
mean:样本均值
sigma: 总体标准差
std: 样本标准差
n: 样本量
confidence_coefficient:置信系数
confidence_level:置信水平 置信度
alpha:显著性水平
功能:构建总体均值的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
t_score = scipy.stats.t.isf(alpha / 2, df = (n-1) ) # t分布临界值
if n >= 30:
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("大样本,总体 sigma 已知:z_score:",z_score)
elif sigma == None:
me = z_score * std / np.sqrt(n)
print("大样本,总体 sigma 未知 z_score",z_score)
lower_limit = mean - me
upper_limit = mean + me
if n < 30 :
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("小样本,总体 sigma 已知 z_score * sigma / np.sqrt(n) n z_score = ",z_score)
elif sigma == None:
me = t_score * std / np.sqrt(n)
print("小样本,总体 sigma 未知 t_score * std / np.sqrt(n) n t_score = ",t_score)
print("t_score:",t_score)
lower_limit = mean - me
upper_limit = mean + me
return (round(lower_limit, 1), round(upper_limit, 1))
某网站流量UV数据如下[52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56]
,我们研究一下该网站的总体流量uv均值,我们先把数据放进来
import numpy as np
data = np.array([52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56])
计算一下均值为:
x_bar = data.mean()
x_bar
# 51.5
样本标准差为:
x_std = sts.tstd(data,ddof = 1) # ddof=1时,分母为n-1;ddof=0时,分母为n
x_std
# 6.840283158189472
进行区间估计:
mean_interval(mean=x_bar, sigma=None,std= x_std, n=n, confidence_coef=0.95)
输出结果:
小样本,总体 sigma 未知 t_score * std / np.sqrt(n)
t_score = 2.093024054408263
(48.3, 54.7)
于是我们有95%的把握,该网站的流量uv介于 [48, 55]之间。
值得一提的是,上面这个案例的数据是实际上是公众号山有木兮水有鱼 的按天统计阅读量……有人可能要说了,你这数据也太惨了,而且举个案例都是小样本。我想说,小样本的原因是这新号一共发了也没几天,至于数量低,你帮忙动动小手转发转发,这数据也就高了~希望下次举例的时候这个能变成大样本,均值怎么着也得个千儿八百的,感谢感谢!
其中样本量
def proportion_interval(p=None, n=None, confidence_coef =0.95):
"""
p: 样本比例
n: 样本量
confidence_coef: 置信系数
功能:构建总体比例的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
me = z_score * np.sqrt((p * (1 - p)) / n)
lower_limit = p - me
upper_limit = p + me
return (round(lower_limit, 3), round(upper_limit, 3))
下期将为大家带来《Python统计学极简入门》之假设检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11