还以为你被上节课的内容唬住了~终于等到你,还好没放弃!
本节我们将说明两个问题:总体均值 的区间估计和总体比例 的区间估计。
区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在“控制之中” ,也可以用来监控互联网领域各类数据指标是否在正常区间。
大样本的情况下
已知,
未知,
小样本的情况下
另外补充一个公式,样本量 这个了解就好,大部分情况下是不缺数据的,尽可能选数据量稍大些的数据。
把以上过程编写成Python的自定义函数:
import numpy as np
import scipy.stats
from scipy import stats as sts
def mean_interval(mean=None, sigma=None,std=None,n=None,confidence_coef=0.95):
"""
mean:样本均值
sigma: 总体标准差
std: 样本标准差
n: 样本量
confidence_coefficient:置信系数
confidence_level:置信水平 置信度
alpha:显著性水平
功能:构建总体均值的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
t_score = scipy.stats.t.isf(alpha / 2, df = (n-1) ) # t分布临界值
if n >= 30:
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("大样本,总体 sigma 已知:z_score:",z_score)
elif sigma == None:
me = z_score * std / np.sqrt(n)
print("大样本,总体 sigma 未知 z_score",z_score)
lower_limit = mean - me
upper_limit = mean + me
if n < 30 :
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("小样本,总体 sigma 已知 z_score * sigma / np.sqrt(n) n z_score = ",z_score)
elif sigma == None:
me = t_score * std / np.sqrt(n)
print("小样本,总体 sigma 未知 t_score * std / np.sqrt(n) n t_score = ",t_score)
print("t_score:",t_score)
lower_limit = mean - me
upper_limit = mean + me
return (round(lower_limit, 1), round(upper_limit, 1))
某网站流量UV数据如下[52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56]
,我们研究一下该网站的总体流量uv均值,我们先把数据放进来
import numpy as np
data = np.array([52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56])
计算一下均值为:
x_bar = data.mean()
x_bar
# 51.5
样本标准差为:
x_std = sts.tstd(data,ddof = 1) # ddof=1时,分母为n-1;ddof=0时,分母为n
x_std
# 6.840283158189472
进行区间估计:
mean_interval(mean=x_bar, sigma=None,std= x_std, n=n, confidence_coef=0.95)
输出结果:
小样本,总体 sigma 未知 t_score * std / np.sqrt(n)
t_score = 2.093024054408263
(48.3, 54.7)
于是我们有95%的把握,该网站的流量uv介于 [48, 55]之间。
值得一提的是,上面这个案例的数据是实际上是公众号山有木兮水有鱼 的按天统计阅读量……有人可能要说了,你这数据也太惨了,而且举个案例都是小样本。我想说,小样本的原因是这新号一共发了也没几天,至于数量低,你帮忙动动小手转发转发,这数据也就高了~希望下次举例的时候这个能变成大样本,均值怎么着也得个千儿八百的,感谢感谢!
其中样本量
def proportion_interval(p=None, n=None, confidence_coef =0.95):
"""
p: 样本比例
n: 样本量
confidence_coef: 置信系数
功能:构建总体比例的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
me = z_score * np.sqrt((p * (1 - p)) / n)
lower_limit = p - me
upper_limit = p + me
return (round(lower_limit, 3), round(upper_limit, 3))
下期将为大家带来《Python统计学极简入门》之假设检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28