
上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。
我们描述一组数据的时候,通常分三个方面描述:集中趋势、离散趋势、分布形状。通俗来说,集中趋势是描述数据集中在什么位置,离散趋势描述的是数据分散的程度,分布形状描述的是数据形状。
首先,来看描述数据的集中趋势,使用的三个常见的统计量:
Excel求算术平均数的函数=AVERAGE(A1:A8)
PS:聪明的你肯定知道把上面8个数据
2,23,4,17,12,12,13,16
,用左手复制到你Excel中的A1:A8单元格(记得竖着放!)
用Python求算术平均数
## 使用 numpy 库里的 mean 函数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.mean(data))
# 12.375
Excel求几何平均数的函数=GEOMEAN(A1:A8)
用Python求几何平均数
# 使用 scipy 库里的 gmean 函数求几何平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.gmean(data))
# 9.918855683110795
n个数的倒数的算术平均数的倒数
Excel求调和平均数的函数=HARMEAN(A1:A8)
Python求调和平均数
# 使用 scipy 库里的 hmean 函数求调和平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.hmean(data))
# 6.906127821278071
还没看晕吧?我们小结一下,三者的大小排序一般是算术平均值 ≥ 几何平均值 ≥ 调和平均值
。另外
数值类数据的均值一般用算术平均值,比例型数据的均值一般用几何平均值,平均速度一般用调和平均数
中位数是把数据按照顺序排列,处于中间位置的那个数
Excel求中位数的函数=MEDIAN(A1:A8)
Python求中位数
# 使用 numpy 库里的 median 函数求中位数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.median(data))
# 12.5
众数是一组数据中出现次数最多的变量值。
Excel求众数的函数=MODE(A1:A8)
Python求众数
# 使用 scipy 库里的 mode 函数求众数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.mode(data))
# ModeResult(mode=array([12]), count=array([2]))
以上便是描述数据集中趋势的几个统计量,接下来我们来看描述数据离散趋势的统计量:
四分位数用3个分位数,将数据等分成4个部分。这3个四分位数,分别位于这组数据升序排序后的25%、50%和75%的位置上。另外,75%分位数与25%分位数的差叫做四分位距。
Excel求分位数的函数=QUARTILE(A1:A8,1)
,括号里面的参数:0代表最小值,1代表25%分位数,2代表50%分位数,3代表75%分位数,4代表最大值,
Python求该组数据的下四分位数与上四分位数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,25)) #25分位数
print(sts.scoreatpercentile(data,75)) #75分位数
10.0
16.25
补充一点,关于描述性统计部分的图表可视化,本系列教程不做展开,唯一值得一提的是箱线图,不论是描述数据、还是判断异常都是你应该掌握的数据分析利器(在第8节案例8.2中会详细举例说明)这里先简单举例如下
用四分位数绘制的箱线图
import seaborn as sns
data = [2,23,4,17,12,12,13,16]
# 使用sns.boxplot()函数绘制箱线图
sns.boxplot(data=data)
箱线图可以很直观地看到:数据的最大值、最小值、以及大部分数据集中在什么区间。
具体来说就是:
异常值、上边缘 Q3+1.5(Q3-Q1)
、上四分位数 Q3
、中位数 Q2
下四分位数 Q1
、下边缘 Q1-1.5(Q3-Q1)
极差又称范围误差或全距,是指一组数据中最大值与最小值的差
Excel求极差的函数=MAX(A1:A8) - MIN(A1:A8)
Python 求极差
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.ptp(data))
# 21
四分位距是上四分位数与下四分位数之差,一般用表示
Excel求分位数的函数=QUARTILE(A1:A8,3)-QUARTILE(A1:A8,1)
Python 求四分位距
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,75)-sts.scoreatpercentile(data,25))
# 6.25
方差是一组数据中的各数据值与该组数据算术平均数之差的平方的算术平均数。
Excel求方差的函数=VAR(A1:A8)
Python求方差
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tvar(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
#46.55357142857143
标准差为方差的开方。总体标准差常用σ表示,样本标准差常用S表示。
Excel求方差的函数=STDEV(A1:A8)
Python求标准差:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
# 6.823017765517794
对不同变量或不同数组的离散程度进行比较时,如果它们的平均水平和计量单位都相同,才能利用上述指标进行分析,否则需利用变异系数来比较它们的离散程度。
变异系数又称为离散系数,是一组数据中的极差、四分位差或标准差等离散指标与算术平均数的比率。
Excel求变异系数的函数=STDEV(A1:A8)/AVERAGE(A1:A8)
Python求标准差变异系数:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data)/sts.tmean(data))
# 0.5513549709509329
看完了描述数据离散程度的几个统计量,我们接着看描述数据分布形状的偏度和峰度:
偏度系数是对分布偏斜程度的测度,通常用SK表示。偏度衡量随机变量概率分布的不对称性,是相对于平均值不对称程度的度量。
当偏度系数为正值时,表示正偏离差数值较大,可以判断为正偏态或右偏态;反之,当偏度系数为负值时,表示负偏离差数值较大,可以判断为负偏态或左偏态。偏度系数的绝对值越大,表示偏斜的程度就越大。
Excel求偏度的函数=SKEW(A1:A8)
Python如何求偏度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.skew(data,bias=False)) # bias=False 代表计算的是总体偏度,bias=True 代表计算的是样本偏度
# -0.21470003988916822
峰度描述的是分布集中趋势高峰的形态,通常与标准正态分布相比较。在归一化到同一方差时,若分布的形状比标准正态分布更“瘦”、更“高”,则称为尖峰分布;若比标准正态分布更“矮”、更“胖”,则称为平峰分布。
峰度系数是对分布峰度的测度,通常用K表示:
由于标准正态分布的峰度系数为0,所以当峰度系数大于0时为尖峰分布,当峰度系数小于0时为平峰分布。
Excel求峰度的函数
=KURT(A1:A8)
Python如何求峰度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.kurtosis(data,bias=False)) # bias=False 代表计算的是总体峰度,bias=True 代表计算的是样本峰度
# -0.17282884047242897
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15