京公网安备 11010802034615号
经营许可证编号:京B2-20210330
还以为你被上节课的内容唬住了~终于等到你,还好没放弃!
本节我们将说明两个问题:总体均值 的区间估计和总体比例 的区间估计。
区间估计经常用于质量控制领域来检测生产过程是否正常运行或者在“控制之中” ,也可以用来监控互联网领域各类数据指标是否在正常区间。

大样本的情况下
已知,
未知,
小样本的情况下
另外补充一个公式,样本量 这个了解就好,大部分情况下是不缺数据的,尽可能选数据量稍大些的数据。
把以上过程编写成Python的自定义函数:
import numpy as np
import scipy.stats
from scipy import stats as sts
def mean_interval(mean=None, sigma=None,std=None,n=None,confidence_coef=0.95):
"""
mean:样本均值
sigma: 总体标准差
std: 样本标准差
n: 样本量
confidence_coefficient:置信系数
confidence_level:置信水平 置信度
alpha:显著性水平
功能:构建总体均值的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
t_score = scipy.stats.t.isf(alpha / 2, df = (n-1) ) # t分布临界值
if n >= 30:
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("大样本,总体 sigma 已知:z_score:",z_score)
elif sigma == None:
me = z_score * std / np.sqrt(n)
print("大样本,总体 sigma 未知 z_score",z_score)
lower_limit = mean - me
upper_limit = mean + me
if n < 30 :
if sigma != None:
me = z_score * sigma / np.sqrt(n)
print("小样本,总体 sigma 已知 z_score * sigma / np.sqrt(n) n z_score = ",z_score)
elif sigma == None:
me = t_score * std / np.sqrt(n)
print("小样本,总体 sigma 未知 t_score * std / np.sqrt(n) n t_score = ",t_score)
print("t_score:",t_score)
lower_limit = mean - me
upper_limit = mean + me
return (round(lower_limit, 1), round(upper_limit, 1))
某网站流量UV数据如下[52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56],我们研究一下该网站的总体流量uv均值,我们先把数据放进来
import numpy as np
data = np.array([52,44,55,44,45,59,50,54,62,46,54,42,60,62,43,42,48,55,57,56])
计算一下均值为:
x_bar = data.mean()
x_bar
# 51.5
样本标准差为:
x_std = sts.tstd(data,ddof = 1) # ddof=1时,分母为n-1;ddof=0时,分母为n
x_std
# 6.840283158189472
进行区间估计:
mean_interval(mean=x_bar, sigma=None,std= x_std, n=n, confidence_coef=0.95)
输出结果:
小样本,总体 sigma 未知 t_score * std / np.sqrt(n)
t_score = 2.093024054408263
(48.3, 54.7)
于是我们有95%的把握,该网站的流量uv介于 [48, 55]之间。
值得一提的是,上面这个案例的数据是实际上是公众号山有木兮水有鱼 的按天统计阅读量……有人可能要说了,你这数据也太惨了,而且举个案例都是小样本。我想说,小样本的原因是这新号一共发了也没几天,至于数量低,你帮忙动动小手转发转发,这数据也就高了~希望下次举例的时候这个能变成大样本,均值怎么着也得个千儿八百的,感谢感谢!
其中样本量
def proportion_interval(p=None, n=None, confidence_coef =0.95):
"""
p: 样本比例
n: 样本量
confidence_coef: 置信系数
功能:构建总体比例的置信区间
"""
alpha = 1 - confidence_coef
z_score = scipy.stats.norm.isf(alpha / 2) # z分布临界值
me = z_score * np.sqrt((p * (1 - p)) / n)
lower_limit = p - me
upper_limit = p + me
return (round(lower_limit, 3), round(upper_limit, 3))
下期将为大家带来《Python统计学极简入门》之假设检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22