京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析领域,人工智能算法扮演着重要的角色。这些算法利用大数据和机器学习技术,帮助我们从海量数据中提取有价值的信息以支持决策和洞察。以下是一些常用的人工智能算法:
逻辑回归(Logistic Regression):逻辑回归是一种广泛应用于分类问题的监督学习算法。它通过将输入变量与权重相乘,并经过一个激活函数(如sigmoid函数)来预测离散的输出。
决策树(Decision Trees):决策树是一种基于树状结构的分类和回归方法。它通过对数据进行逐步分割,每次选择最佳的属性作为划分依据,构建出一棵树,使得每个叶节点都是一个类别或数值预测。
随机森林(Random Forests):随机森林是一种集成学习算法,基于多个决策树进行预测。随机森林通过对训练数据进行自助采样,并在每个决策树的节点上随机选择一部分特征进行划分,最终采用投票或平均值的方式得到预测结果。
支持向量机(Support Vector Machines):支持向量机是一种二分类的监督学习算法,通过在特征空间中构建一个最优的超平面来将不同类别的样本分开。它可以处理高维数据,并具有较强的泛化能力。
神经网络(Neural Networks):神经网络是一种模仿人脑神经系统结构和功能的机器学习模型。它由多个互连的神经元层组成,每个神经元都接收来自前一层的输入,并将其加权后传递给激活函数进行非线性转换。神经网络在图像识别、自然语言处理等领域广受关注。
K均值聚类(K-means Clustering):K均值聚类是一种无监督学习算法,用于将数据集划分为预定义数量的簇。它通过计算数据点之间的距离来确定每个数据点所属的簇,直到达到最小化簇内误差的目标。
马尔可夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC):MCMC是一类采样方法,用于对复杂概率分布进行近似求解。它基于马尔可夫链的转移概率,通过迭代采样得到一系列样本,最终可以用于估计参数、模拟分布等任务。
集成学习(Ensemble Learning):集成学习是一种将多个基础模型整合起来的方法,以提高预测的准确性和鲁棒性。常见的集成学习算法包括Bagging、Boosting和Stacking等。
以上只是人工智能算法的一小部分,实际上还有很多其他的算法和方法可以应用于数据分析中。选择适当的算法取决于问题的特性、数据的类型以及分析的目标。在实践中,数据科学家通常会根据情况进行算法的选择和组合,以获得最佳的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14