
常用的卷积神经网络模型有很多,每个模型都有不同的结构和应用领域。以下是一些常见的卷积神经网络模型:
LeNet-5:LeNet-5 是最早的卷积神经网络之一,由Yann LeCun等人在1998年提出。它主要应用于手写数字识别,包含卷积层、池化层和全连接层。
AlexNet:AlexNet 是在2012年由Alex Krizhevsky等人提出的,是第一个在大规模图像数据集上取得重大突破的深度卷积神经网络模型。它具有多个卷积层和全连接层,并使用了ReLU激活函数和Dropout正则化技术。
VGGNet:VGGNet 是由Karen Simonyan和Andrew Zisserman提出的,其特点是网络结构非常深,并且所有卷积层都采用相同大小的卷积核尺寸(通常为3x3)。VGGNet 在图像分类、目标检测和语义分割等任务中取得了良好的性能。
GoogLeNet:GoogLeNet,也称为Inception Net,是由Google团队提出的模型。它引入了"Inception"模块,使用不同大小的卷积核并行处理输入,提高了网络在不同尺度上的表达能力。GoogLeNet 在ILSVRC 2014图像分类挑战赛中获得了第一名。
ResNet:ResNet 是由Kaiming He等人在2015年提出的,它解决了深度神经网络的退化问题。ResNet 使用了残差块(residual block),通过跳跃连接(skip connection)将输入直接添加到输出中,使得网络可以更轻松地训练非常深的层次。
DenseNet:DenseNet 是由Gao Huang等人在2016年提出的模型。它引入了密集连接(dense connection),每个层的输出都与后续所有层的输入相连,促进了信息流动和特征重用。
MobileNet:MobileNet 是由谷歌团队提出的轻量级卷积神经网络模型,用于在计算资源受限的移动设备上进行图像识别。MobileNet 使用深度可分离卷积(depthwise separable convolution)来减少参数量和计算复杂度。
EfficientNet:EfficientNet 是一系列由谷歌团队提出的模型,其中 B0 到 B7 分别表示不同规模大小的模型。EfficientNet 使用复合缩放方法,在网络深度、宽度和分辨率上进行统一缩放,以在精度和效率之间取得平衡。
这些是常见的卷积神经网络模型,它们在许多计算机视觉任务中表现出色,并对深度学习的发展起到了重要的推动作用。研究人员和实践者根据不同的需求,可以选择适合的模型来解决各种问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10