cda

数字化人才认证

首页 > 行业图谱 >

123 1/3
常用的卷积神经网络模型有哪些?
2023-07-17
常用的卷积神经网络模型有很多,每个模型都有不同的结构和应用领域。以下是一些常见的卷积神经网络模型: LeNet-5:LeNet-5 是最早的卷积神经网络之一,由Yann LeCun等人在1998年提出。它主要应用于手写数字识别, ...
训练神经网络模型时对图片的预处理是否必要?
2023-04-03
在训练神经网络模型时,对输入数据进行预处理是一个非常重要的步骤。特别是当我们处理图片数据时,预处理操作可以帮助我们提高模型的性能和效率。 为什么需要预处理? 首先,让我们考虑一下图片在计算机中是如何表示 ...
对于一个准确率不高的神经网络模型,应该从哪些方面去优化?
2023-03-31
神经网络模型是一种机器学习算法,用于解决许多现实世界的问题。然而,即使使用最先进的技术和算法构建的神经网络模型也可能存在准确率不高的问题。在这种情况下,我们需要考虑从哪些方面去优化。在本文中,我将分享 ...
数据回归预测更适合用哪种神经网络模型
2023-03-31
数据回归预测是指利用历史数据来预测未来数值的变化趋势。在现代科技时代,数据已经成为一种非常宝贵的资源。人们通过对大量数据的分析和处理,可以有效地预测未来趋势,并做出正确的决策。神经网络作为一种强大的工 ...
数据科学家需要掌握哪些深度学习技能?
2024-06-04
作为数据科学家,深度学习是必不可少的技能之一。深度学习是机器学习领域的一个子领域,通过建立和训练多层神经网络来模拟人类大脑的工作原理。在数据科学的实践中,掌握深度学习技能对于处理复杂的数据和解决现实世 ...
数据挖掘中最常用的算法模型有哪些?
2024-01-30
在数据挖掘领域中,有许多常用的算法模型被广泛应用于数据分析、预测和模式识别等任务。以下是一些最常见的算法模型: 决策树:决策树是一种基于树状结构的分类和回归方法。它通过对数据进行逐步分割来构建一棵树 ...
基于人工智能的数据分析方法有哪些?
2023-10-17
在信息时代,海量的数据涌入各行各业。为了从这些数据中提取有价值的洞察,并做出准确的决策,人工智能(AI)正日益成为数据分析领域的关键技术。本文将介绍基于人工智能的数据分析方法,包括机器学习、深度学习和 ...
CDA LEVEL III
2023-10-11
一、总则 CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的资格认证,旨在提升用户数字技能,助力企业数字化转型,推动行业数字化发展。「CDA人才 ...
如何在R中实现深度学习神经网络?
2023-10-11
深度学习神经网络是一种在许多领域取得突破性成果的机器学习技术。它能够通过模拟人脑神经元之间的连接方式,从大量的数据中学习和提取特征,进而完成任务如图像识别、自然语言处理等。在R语言中,有几个流行的包 ...
如何在R中实现深度学习神经网络?
2023-09-07
深度学习神经网络是一种在许多领域取得突破性成果的机器学习技术。它能够通过模拟人脑神经元之间的连接方式,从大量的数据中学习和提取特征,进而完成任务如图像识别、自然语言处理等。在R语言中,有几个流行的包可 ...
机器学习中有哪些高级模型和算法?
2023-08-15
在机器学习领域中,有许多高级模型和算法被广泛应用于各种任务。下面将介绍其中一些重要的高级模型和算法。 深度神经网络(Deep Neural Networks,DNN):深度神经网络是一种基于人工神经元之间相互连接的模型。它 ...
怎么使用时空数据预测库存需求?
2023-08-09
使用时空数据预测库存需求是一种有效的方法,可以帮助企业在不同时间和地点合理安排库存,以满足客户需求并降低成本。时空数据是指包含时间和空间信息的数据,如销售记录、供应链数据和地理位置数据等。下面将介绍如 ...
算法和模型之间有何区别和联系?
2023-08-08
算法和模型是机器学习领域中两个重要的概念,它们在数据分析、预测和决策等任务中起着关键作用。虽然它们有不同的定义和功能,但在实际应用中常常紧密联系在一起。 让我们来看看算法的定义。算法是一组严格定义的规 ...
机器学习模型中的超参数是什么?
2023-07-19
超参数是机器学习模型中的一类参数,它们用于控制模型的训练过程和性能。与模型的权重不同,超参数在训练之前需要手动设置,并且通常在交叉验证或验证集上进行优化。 在机器学习中,超参数的选择对于模型的性能和泛 ...
挖掘算法中最常用的有哪些?
2023-06-29
挖掘算法是机器学习的一个分支,它是用于从数据集中提取出有意义的信息和模式的方法。在挖掘算法中,有许多不同的技术和算法可供选择,每种算法都有其独特的优点和适用范围。本文将介绍挖掘算法中最常用的几种算法。 ...
人工智能的核心概念是什么?
2023-06-17
人工智能是一种使计算机系统拥有类似于人类的智能行为和思维能力的技术。它涉及到各种领域,包括计算机视觉、自然语言处理、机器学习等。虽然人工智能覆盖了广泛的范围,但其核心概念可以归纳为以下几点。 机器学 ...
如何选择合适的预测模型?
2023-06-15
预测模型是机器学习和数据科学领域的重要组成部分,它们帮助我们了解数据背后的趋势和模式,并为未来进行预测。选择合适的预测模型可以提高预测的准确性和可靠性,本文将介绍如何选择合适的预测模型。 确定问题类型 ...
如何处理大规模数据集?
2023-06-15
随着现代技术的不断发展,处理大规模数据集已经成为了许多行业和领域的必要工作。从互联网公司、金融机构、医疗保健到政府机构,都需要处理大量数据,以帮助他们做出更明智的决策。在本文中,我们将探讨如何处理大规 ...
怎么理解tensorflow中tf.train.shuffle_batch()函数?
2023-04-13
TensorFlow是一种流行的深度学习框架,它提供了许多函数和工具来优化模型的训练过程。其中一个非常有用的函数是tf.train.shuffle_batch(),它可以帮助我们更好地利用数据集,以提高模型的准确性和鲁棒性。 首先,让 ...
BP神经网络里的训练次数,训练目标,学习速率怎么确定?
2023-04-13
BP神经网络是一种常见的人工神经网络模型,用于解决分类、回归和聚类等问题。在BP神经网络中,训练次数、训练目标和学习速率是三个重要的超参数,对模型的性能和训练效率有着至关重要的影响。本文将从理论和实践两方 ...
123 1/3

OK