京公网安备 11010802034615号
经营许可证编号:京B2-20210330
许多“如何将科学数据化”的课程和文章,包括我自己的课程和文章,都倾向于强调统计学、数学和编程等基本技能。然而,最近,我通过自己的经历注意到,这些基本技能很难转化为实际技能,从而使你能够就业。
因此,我想创建一个唯一列表,其中包含实用技能,这些技能将使您具有工作能力。
我谈到的前四项技能对任何数据科学家来说都是绝对关键的,无论你是什么专业的。以下技能(5-11)都是重要的技能,但用法会因你的专业而异。
例如,如果你最有统计基础,你可能会花更多的时间在推断统计上。相反,如果你对文本分析更感兴趣,你可能会花更多的时间学习NLP,或者如果你对决策科学感兴趣,你可能会专注于解释性建模。你明白重点了。
说到这里,让我们深入研究一下我认为最实用的11项数据科学技能:
学习如何编写健壮的SQL查询,并在像Airflow这样的工作流管理平台上调度它们,将使您成为一名数据科学家,这是第1点的原因。
为什么?原因有很多:
因此,作为数据科学家,您必须是SQL方面的专家。没有例外。
资源
无论您是在构建模型、探索要构建的新特性,还是在进行深度挖掘,您都需要知道如何处理数据。
数据争论意味着将数据从一种格式转换为另一种格式。
特征工程是数据争论的一种形式,但具体指从原始数据中提取特征。
如何操作数据并不重要,不管是使用Python还是SQL,但您应该能够随心所欲地操作数据(当然,在可能的参数范围内)。
资源
当我说“版本控制”时,我特别指的是GitHub和Git。Git是世界上使用的主要版本控制系统,GitHub本质上是一个基于云的文件和文件夹存储库。
虽然Git不是一开始学习的最直观的技能,但对于几乎每一个与编码相关的角色来说,了解它是必不可少的。为什么?
花时间学习GIT。它会带你走很远的!
建造一个视觉上令人惊叹的仪表板或一个精确度超过95%的复杂模型是一回事。但是如果你不能把你的项目的价值传达给其他人,你就不会得到你应得的认可,最终,你的职业生涯就不会像你应该做的那样成功。
讲故事指的是你“如何”交流你的见解和模型。从概念上来说,如果你想一本图画书,洞察力/模型就是图画,而“讲故事”指的是连接所有图画的叙述。
在科技界,讲故事和交流是被严重低估的技能。从我职业生涯中所见,这种技能是大三学生与大四学生和经理人之间的区别。
构建回归和分类模型(即预测模型)并不是你总是要做的事情,但如果你是一名数据科学家,雇主会希望你知道这一点。
即使这不是你经常做的事情,也是你必须擅长的事情,因为你希望能够构建高性能的模型。在我的职业生涯中,到目前为止,我只生产了两个机器学习模型,但它们都是对业务产生重大影响的关键任务模型。
因此,您应该很好地理解数据准备技术、增强算法、超参数调优和模型评估度量。
资源
许多机器学习算法在很长一段时间内被认为是“黑箱”,因为不清楚这些模型是如何基于各自的输入得出预测的。这种情况现在正在改变,因为广泛采用了可解释的机器学习技术,如SHAP和Lime。
SHAP和LIME是两种技术,它们不仅告诉您每个特征的特征重要性,还告诉您对模型输出的影响,类似于线性回归方程中的系数。
使用SHAP和LIME,您可以创建解释性模型,也可以更好地交流预测模型背后的逻辑。
资源
a/B测试是一种实验形式,您可以比较两个不同的组,根据给定的指标,看看哪个组表现更好。
A/B测试可以说是企业界最实用、应用最广泛的统计概念。为什么?A/B测试允许您将100s或1000s的小改进组合在一起,从而随着时间的推移产生重大的变化和改进。
如果您对数据科学的统计方面感兴趣,A/B测试对于理解和学习是必不可少的。
资源
就我个人而言,我在职业生涯中没有使用过集群,但它是数据科学的核心领域,每个人至少都应该熟悉。
集群是有用的,原因有很多。您可以找到不同的客户细分,您可以使用聚类来标记未标记的数据,您甚至可以使用聚类来为模型找到截止点。
下面是一些参考资料,介绍了您应该了解的最重要的集群技术。
资源
虽然我一生中还没有构建过推荐系统,但它是数据科学中最实际的应用之一。推荐系统之所以如此强大,是因为它们有能力推动收入和利润。事实上,亚马逊声称在2019年,由于他们的推荐系统,他们的销售额提高了29%。
因此,如果您曾经在一家公司工作,其中的用户必须做出选择,并且有许多选项可供选择,推荐系统可能是一个有用的应用程序。
NLP,或自然语言处理,是人工智能的一个分支,专注于文本和语音。与机器学习不同,我认为NLP还远未成熟,这正是它如此有趣的原因。
NLP有很多用例…
总的来说,NLP是数据科学世界中一个非常有趣和有用的利基领域。
资源
最近,数据科学家采用了度量开发的职责,因为表面度量依赖于1)数据来计算度量和2)代码来计算和输出度量。
度量开发涉及几个方面:
我希望这有助于指导你的学习,并给你一些未来一年的方向。有很多东西要学,所以我肯定会选择几个听起来对你来说最有趣的技能,然后从那里开始。
请记住,这更多的是一篇由轶事经验支持的固执己见的文章,所以从这篇文章中获取你想要的东西。但我一如既往地祝你在学习上取得最好的成绩!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01