京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分享
数据科学有志之士最常见的问题之一是 "对于机器学习,我需要知道多少数学?" 希望进入机器学习领域的学生往往将数学视为一个巨大的入门障碍。
行业中的守门人对这种担忧没有帮助,他们给学生贴上了不合格的标签,除非他们拥有该学科的硕士或博士学位。
那么,为了在数据科学行业工作,你需要知道多少数学?
答案是。没有你想象的那么多。
大多数公司在数据的帮助下解决非常类似的用例。他们要求数据科学家建立机器学习模型,可以预测客户流失,进行细分,并预测销售。
用于解决这些问题的方法是相似的,而且任务变得相当重复。没有必要重新发明轮子,他们使用开箱即用的ML算法。
即使出现了需要建立自定义机器学习模型的情况,对特定主题的直观理解也是足够的。你不需要去深究,也绝对不需要成为数学专家来成为数据科学家。
例如,我们知道梯度下降是用来寻找线性回归中的最佳拟合线的。你不需要开始学习如何解决微分方程,你只需要了解微积分的原理,就可以了解到这是如何做到的。
同样,如果你要用Tensorflow构建一个神经网络--你需要进行大量的矩阵操作,但你将在计算机程序的帮助下进行。由于这个原因,你不需要回去练习解代数方程。你只需要了解它们是如何工作的。
在这篇文章中,我将为你指出一些资源,帮助你开始学习数据科学的数学。我将专注于三个领域--线性代数、微积分和统计。
线性代数
线性代数--从基础到前沿。edX上的这门课程将在本科水平上教你线性代数。它从一个缓慢的空间开始,只要你有高中水平的数学知识,你就可以学习这个课程。
这门课程最好的地方是,它用Matlab中的实际例子教你线性代数,这让你通过算法和编程的视角来看待这个学科。如果你的目标是学习机器学习的线性代数,这种学习方法特别有用。
这个课程可以免费试听。如果你想获得结业证书,你可以申请财政援助。
3Blue1Brown--《线性代数精华》:我以前没有上过这门课,但在我自己寻找数学学习资源的过程中,曾多次遇到它。
许多有志于机器学习的人对这门课程深信不疑,因为它为学习者提供了对线性代数的概念性理解。与其学习任意的公式或机械地推导它们,你将获得对线性代数如何工作的直觉。如果你的最终目标是将这些概念应用于机器学习模型,这将是非常有帮助的。
微积分
我推荐两门为机器学习学习微积分的课程。微积分的本质》是3Blue1Brown开设的一门伟大的微积分入门课程。同样,这将为你提供对微积分概念的直观理解,并深入解释公式背后的意义,而不仅仅是让你记住它们。
接下来,你可以学习3Blue1Brown的神经网络系列。如果你知道如何使用Keras等库实现神经网络,但并不真正了解这些模型背后的工作原理,你应该学习这门课程。它为你提供了梯度下降算法的全面解释,以及其背后的微积分概念。
统计数字
概率与统计:To p or not to p? ?-库塞拉
这是我所学过的最好的统计学入门课程之一,由伦敦大学提供。这门课程是针对主修非数学专业的学生,如商业和金融。
正因为如此,统计学概念的解释方式简单易懂,并有许多真实世界的例子。
学习本课程后,你将对描述性和推断性统计、不同的抽样分布、抽样技术、置信区间以及P值的计算方法有所了解。
所有这些概念都可以直接应用于现实世界的数据分析。
统计学习-edX
这是另一个学习机器学习模型背后的直觉的优秀课程。
与本列表中的其他资源一样,本课程不太注重数学公式,而是以概念的方式解释机器学习模型。
然而,要学习这门课程,建议有一些微积分知识,因为导师倾向于使用符号,否则可能会使你感到困惑。
你将学习线性和逻辑回归等概念,以及正则化技术,如脊和套索回归,以及何时使用它们。有一整堂课专门讨论用于减轻过拟合的技术,并解释了这些技术背后的基本数学直觉。
这是我上过的最有帮助的课程之一,因为它帮助我不再把机器学习模型当作黑盒子。我对不同类型的模型应该用在什么地方,什么时候应该应用降维,以及什么时候执行不同种类的特征选择技术有了了解。
我花了很多时间试图回到过去,学习本科阶段的微积分和线性代数。然而,尽管花了很多时间学习公式和解微分方程,我的知识还是有脱节,因为我从来没有完全理解这些概念与机器学习算法的关系。
上述资源是突破这一障碍的好方法,因为它们让你对机器学习背后的数学有一个概念性的理解,而不是把你带入复杂公式和定理的兔子洞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05