CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话!今天我们聊一聊 python分析“打工人”
最近,“打工梗”在朋友圈持续爆火,没有人能避开来自工友的贴心问候——“早安,打工人”,与此同时“打工人”的表情包也席卷全网,铺天盖地,到处吟唱着积极向上的打工人语录。
“累吗?累就对了,舒服是留给有钱人的。早安,打工人!冷吗?冷就对了,温暖是留给开小轿车的人。早安,打工人!”
相比于先前带点“丧”的社畜梗,打工梗用昂扬积极的心态去对抗工作的焦虑,这些打工人语录带着自嘲,也是认清生活本质的解压方式,用较为轻松接地气的玩梗心态,迎接每一天的新工作。
打工梗究竟为什么突然这么火呢?之前小z在《打工人分析简报》中已经分析了各个平台打工人话题的相关数据,我们从中也受到了些启发。
今天我们就来主要分析一下B站上“打工人”的相关视频,看看这6625个视频的背后,打工梗凭什么突然刷屏网络。
我们使用python获取,技术分析流程分为以下三个步骤:
爬虫部分代码暂略,首先导入分析所需的包并读入数据集,原数据集一共包含6625个样本,7个字段,字段含义为:分区标签、视频标题、上传时间、观看数、弹幕数、up主、视频url。
01、数据读入
# 导入包 import numpy as np import pandas as pd import matplotlib.pyplot as plt
# 读入数据 df = pd.read_excel('./data/B站打工人视频10-28.xlsx') df.head()
print(df.shape) (6625, 7)
02、数据预处理
此部分我们初步对原始数据进行处理,其中包含:
处理之后的数据如下所示:
def transform_unit(x_col): """ 功能:转换数值型变量的单位 """ # 提取数值 s_num = df[x_col].str.extract('(d+.*d*)').astype('float') # 提取单位 s_unit = df[x_col].str.extract('([u4e00-u9fa5]+)') s_unit = s_unit.replace('万', 10000).replace(np.nan, 1) s_multiply = s_num * s_unit return s_multiply
# 去重 df = df.drop_duplicates() # 删除列 df.drop('video_url', axis=1, inplace=True) # 转换单位 df['view_num'] = transform_unit(x_col='view_num') df['danmu'] = transform_unit(x_col='danmu') # 筛选时间 df = df[(df['upload_time'] >= '2020-09-01') & (df['title'].astype('str').str.contains('打工人'))] df.head()
03、数据可视化分析
首先导入所需包,其中jieba用于中文分词,pyecharts用于绘制动态可视化图形,stylecloud包用于绘制词云图。关键部分代码如下:
import jieba from pyecharts.charts import Bar, Line, Pie, Map, Scatter, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False
01 打工人视频发布热度走势图
可以看到“打工人”相关视频首先出现在2020年9月5日,最初的一个月还没有引起太大的水花。在一个月后,随着打工梗逐渐深入人心,B站相关视频也出现了爆点。
10月16日,up主“老摸鱼艺术家”的《加油!打工人!》播放量突破350万。几天后,10月22日,up主“三Lu有毒”的视频《早安,打工人!》更是加上了各种打工人优秀语录,同时配上魔性的画面和声音,直接在B站爆火,目前该视频播放量已突破913万。
随后“打工人”的视频如雨后春笋般涌现,单10月27日一天就有292条视频发布。
time_num = df.upload_time.value_counts().sort_index() time_num[:5] 2020-09-05 1 2020-09-08 1 2020-09-09 1 2020-09-12 1 2020-09-13 1 Name: upload_time, dtype: int64
# 条形图 line1 = Line(init_opts=opts.InitOpts(width='1350px', height='750px')) line1.add_xaxis(time_num.index.tolist()) line1.add_yaxis('', time_num.values.tolist(), markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='min'), opts.MarkPointItem(type_='max')]) ) line1.set_global_opts(title_opts=opts.TitleOpts(title='打工人视频发布热度走势图', pos_left='40%'), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate='90')), visualmap_opts=opts.VisualMapOpts(max_=int(time_num.max()), is_show=False), ) line1.set_series_opts(linestyle_opts=opts.LineStyleOpts(width=3), label_opts=opts.LabelOpts(is_show=False) ) line1.render()
02 不同分区的视频发布数量
从视频分区中可以看到,生活区以56.6%的比重占据了半壁江山。
03 不同分区的视频发布播放量
播放量方面也是生活区一枝独秀,累计达到1393万。
04 最高播放的Top10视频
那么都是哪些“打工人”视频播放量最高呢?
我们分析整理了播放量前十的视频,播放量第一是up主“三Lu有毒”的《早安,打工人!》,截止到发稿播放量已达到913万。第二是up主“老摸鱼艺术家”的《加油!打工人!》,截止到发稿播放量已达到357万。
接下来我们对播放量第一第二的“打工人”视频弹幕进行分析,看看大家都在说些什么。
05 早安,打工人!弹幕词云
弹幕中出现最多的就是“泪目”、“工人”。其中那句魔性的“靠恁娘是河南人”,也是引起了不少弹幕。魔性的狗子,激昂的语调也是让人听着十分上头,让人忍不住每天一遍,对自己说上一声“早安,打工人!”
06 《加油,打工人!》弹幕词云
“加油”、“打工人”、“真实”等都是妥妥的高频词。配上最近常被up用来二次创造的动画片《校园小子》,有“文艺复兴”那味儿了。
07 打工人标题词云图
我们最后对打工人视频出现的标题也进行了词云整理。发现标题中除了“打工人”,“早安”、“晚安”、“加油”、“日常”等正能量的词特别多,同时“快乐”、“人上人”等词也在标题中常常出现。
结语
人人都不爱打工,但人人都是打工人。
虽然这些打工人的段子里多少带着些对生活压力的自嘲和调侃,而最火的那句“早安打工人”里,怀着的也还是对新一天的期望。
加油吧,打工人!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
数据分析是一个涉及从数据收集、清理到分析、可视化和解释的复杂过程。随着数据在各行各业中的重要性不断增加,数据分析工具也变 ...
2024-10-066. 方差分析 单因素多水平方差分析 例6.1 不同装配方式对生产的过滤系统数量的差异性检验 某城市过滤水系统生产公司,有A、B、C3 ...
2024-10-06不过,在出题前,要公布上一期LEVEL II中61-65题的答案,大家一起来看! 62、B 64、B 你答对了吗? 66.关于单因素 ...
2024-10-05嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的146-150 ...
2024-10-055. 假设检验 久经考场的你肯定对于很多概念类题目里问到的 “区别和联系” 不陌生,与之类似,在统计领域要研究的是数据之间的区 ...
2024-10-05数据模型(Data Model)是对现实世界数据特征的抽象,用于描述一组数据的概念和定义。它从抽象层次上描述了系统的静态特征、动态 ...
2024-10-044. 区间估计 还以为你被上节课的内容唬住了~终于等到你,还好没放弃! 本节我们将说明两个问题:总体均值 的区间估计和总体比例 ...
2024-10-04大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-033. 数据分布 t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检 ...
2024-10-03大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-022. 描述性统计 上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。 我们描述一组 ...
2024-10-02大数据专业的毕业生可以选择多种就业方向和岗位,主要集中在数据分析、系统研发和应用开发三大领域。以下是一些具体的岗位: 大 ...
2024-10-011.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2024-10-01大数据的全球市场规模在 2023 年估计为 1850 亿美元,预计到 2030 年将达到 3834 亿美元,2023 年至 2030 年的复合年增长率为 11 ...
2024-09-30大数据分析是指收集、分析和处理大量数据以发现市场趋势、洞察力和模式,帮助公司做出更好的商业决策的过程。这些信息可以快速、 ...
2024-09-30大数据分析是当今世界一些最重要行业进步背后的推动力,包括医疗、政府和金融等领域。了解更多关于如何处理大数据以及开始时使用 ...
2024-09-30大数据已经成为日常生活不可或缺的一部分,影响着我们的活动。对大量数据的分析已经成为一个重要的行业,对大数据分析师的需求也 ...
2024-09-30数据分析师证书报名官网指南 数据分析师在现代企业中扮演着越来越重要的角色,掌握数据分析技能不仅能够提升个人职场竞争力,也 ...
2024-09-29大数据分析师培训学什么 课程简介 大数据分析师课程以大数据分析技术为主线,以大数据分析师为培养目标,从数据分析基础、linux ...
2024-09-29随着大数据在各行各业中的应用日益广泛,数据分析师这一职业变得越来越重要。作为一名数据分析师,不仅需要具备扎实的技术能力, ...
2024-09-29