京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:接地气的陈老师
来源:接地气学堂
金九银十,换了工作的同学陆续入职新公司,很多人咨询如何在不熟悉的领域开展数据分析工作。这个问题很普遍,很多转行的同学在面试时就有被问到:“在不熟悉的领域做数据分析,你要怎么学习”今天系统性解答一下。
首先解题
不熟悉三个字是形容词,遇到形容词的第一反应就是找标准。实际上不同的不熟悉程度,需要学习的内容,可以上手做的事情也是不一样的。理解业务,有七个要素:
经营模式:做什么生意(B2B,B2C,B2B2C,B2VC,B2SB)
目标用户:针对何种群体,何种需求
产品形态:提供什么样产品、服务、信息
销售渠道:通过何种方式与用户建立联系
营销策略:通过何种方式运作(维护用户、改进产品、管理商品、发布内容、提升品牌……传统企业叫营销,互联网叫运营)
组织架构:谁来干这些事
营收情况:主要数据指标如何
对这七个问题的不熟悉程度,决定了我们要从哪里开始。常见的“不熟悉”,大致可分为四类(如下图):
等级1
等级1是最不熟悉的情况。常见于大跨度转行/转岗的同学。比如之前是做零售的,现在来做O2O服务;之前做B2C的,现在做B2B;之前是纯后台开发,现在做面对业务的分析;等等。在理解业务的七大要素里,经营模式直接决定了后边6个要素,如果连这个都不了解的话,就得从头学起。先搞清楚到底企业做的是什么生意。
特别强调的是:对经营模式一定要怀有敬畏之心。不同模式看起来相似,可实际情况差异巨大,不能生搬硬套。最常见的就是很多同学都是做B2C的业务出身,想当然的认为B2B就是客单价100万的B2C,结果做出来的东西驴头不对马嘴,最后过不了试用期的都很多。这时候就当自己是小白,每事问,多学习。做东西从最基础的理解数字字典和跑数开始,不着急。
需要注意的是,经营模式这种事,一般都没有一个标准教科书。即使是企业内的人也不一定讲的很清楚。这时候就不能等靠要,指望着吃现成的。要自己行动起来。最好的办法,是从组织架构入手。具体来说分四步:
第一步
通过收集行业垂直媒体报道、新闻报道、公司财报,了解企业大致的经营方式。
第二步
从组织结构入手,先搞清楚自己部门的职责架构,再搞清楚自己部门服务哪些人,他们的职责是什么。特别可以利用新员工培训的机会,在别的部门培养几个哥们姐们。大家都是新人,都缺乏认同感,很容易抱团。以后深入了解业务就有了伴。
第三步
了解数据采集流程和数据。如果有数据字典,可以研究数据字典与业务部门对应关系,哪些部门产生数据,哪些部门使用数据,最常看的数据是什么。如果没有数据字典,干脆试着自己整理一份。在试用期结束转正的时候交给自己领导,绝对会让领导满意度爆棚。
第四步
收集过往的业务行动,观察业务行动与数据指标间关系。先不用急着做复杂的专题分析,先从最简单的标注报表开始。把业务部门行动注在报表上,直观的看哪些行动能拉动数据指标,哪些没啥用。这样就有了初步分析的感觉。之后就可以进一步深入了。
这个过程会很漫长,实际上如果真是大幅度转行的话,头半年都在适应期是很正常的事。所以转行的同学务必注意。新进入一个行业要学习的东西很多,不能一门心思只扎在数据上。不然就只会跑数,还是没法解读数据,没法分析问题。
等级2
等级2,常见于小跨度转行/转岗的同学。比如之前做线下零售,现在来做电商商品运营;之前做传统CRM,现在来做用户运营;之前做广告投放,现在做渠道推广;之前做传统企业的经营分析,现在做58、饿了吗、滴滴这种大量依赖线下组织的互联网企业的经营分析。
这些业务的经营模式是类似的,只是用户群/推广方式/营销方式/产品形态某个方面发生了变化。在进入这些自己有一些熟悉,又有些不了解的领域的时候,可以先对自己要服务的业务流程进行梳理,看看到底哪些是过去经验可以用的,哪些是不能用的。从具体流程入手,可以进步更快。
等级3
等级3,常见于同行间跳槽的同学。比如都是电商、零售、互金、游戏、广告行业的,只是换个公司。经营模式,运作的套路都大同小异。这时候虽然是新领域的,但实际上大部分技能可以复用。不能确定的,是到底这家企业目前状况如何。这时候可以从理解现有报表入手,通过解读报表数据,观察报表使用情况,了解情况自己部门的地位、KPI、问题。对现状有判断之后再下手。
这里要切记用力过猛。很多同学在同行跳槽的时候,是要了50%,100%,甚至150%的涨薪幅度的。巨大的涨薪幅度+熟悉的行业,会让这些同学们头脑发热。觉得自己必须快速做出成绩,让老板刮目相看。可要清醒的是:即使自己再懂套路,也并不了解这个企业的状况。到底这个老板关注什么问题,到底自己要怎么走流程,到底借力哪个部门能把数据成果落地,通通不知道。这时候就得从报表开始一步步来。用力过猛的下场,往往是做了一堆东西不被老板认可,或者根本推进不下去。即使不被扫地出门,自己也会信心崩溃的。
等级4
等级4,常见于内部调动的同学。比如从分公司到总部,比如从总部到分公司,比如换了个职能。这时候看似开启了一个新环境,可实际上大家是知根知底的。这时候可以做大量的准备功课,要学习的是,自己所在的这个新职能到底关注什么问题?这个问题之前是怎么处理的?为什么没有处理完?领导的期望是什么?
摸清底细,就可以直接切入问题了。这时候要避免因为自己很熟悉情况,就想当然的代入自己的想法大干一通。很有可能做的东西不对新领导的胃口,最后被发配镇守边疆。
对还在面试同学的提醒
如果是面试遇到这个问题,还有3点要注意:
第一点:空口说“我学习能力强”不如做一份《业务对比表》。
在面试前,了解下自己要去的企业是干什么的。和HR问清楚,到底自己面试的是什么部门,见得是什么人。然后通过资料收集,具体分析下自己现在做的事和对方有什么差别。收集对方的财报、新闻、第三方报告数据,然后整理成表。即使现场不出示出来,也能在聊天过程中有问有答。这样能极大提升通过率。
第二点:说100句“我会做”,不如一句“我做过”。
所有的面试官,不管是HR还是用人部门,都喜欢吃现成的。与其大讲自己的思路、方法、意识,不如直接上几个例子。比如之前自己是怎么做一张新报表,分析一个新专题,做一个新模型。先摆事实,再说自己有学习思路,这样更容易赢得信任。
第三点:理论知识与实操技能各占一半。
要注意的是,陈老师前边讲的全是实操。可实际上有些领导是很理论派的,自己就很喜欢钻研书本。所以完全说我进来后一二三四步,可能被这些人质疑:“你都不学些经典理论的?”但注意,同样是这波人,又很喜欢显得自己很懂理论,你真讲“我喜欢看书,我爱研究理论”很有可能因为某些观点跟他们撕起来。所以最好的办法就是讲自己感兴趣,但不专业(想拍马屁,可以加一句:所以特别期待领导指导),比如我会研究有关工作的XXX著作,但是更看重实际应用。这样不容易踩雷。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22