
近年来,无论在编程领域,还是人工智能开发,亦或在职场技能上,Python的热度都居高不下。
2017年,Python被纳入山东省小学教材;2018年,Python列入全国计算机等级考试。同时,浙江省信息技术教材也改用Python语言。
2019年2月超越多年的王者Java,登上编程语言流行指数(PYPL)排行榜榜首。
PYPL依据编程语言在Google上相关搜索的频率高低而定,最新一期榜单上,Python份额高达26.42%,比上一年同期增长了5.2个百分点,增长势头最猛。
从走势图中,能十分明显的看到Python的增长。
2020年,Python已成为职场人士,一项大幅提升职场竞争力的标配技能。
论文没数据?用Python爬取相关数据!
厌烦重复工作?用Python自动化处理!
想进大企业?HR更欢迎会编程的面试者
……
随着Python热度迅猛攀升,街头巷尾也出现了一些魔化Python的热潮。
其实,Python再好,也只是门极佳的计算机语言,它有很多学习方向,如:数据分析、web开发、机器学习、网络爬虫、运维、游戏开发、办公自动化等,每个分支都需掌握精髓,学以致用才能发挥出功效。
所以,无论你选择哪个方向,静下心来一步一个脚印的学习才是王道。这里,给python从业者或想学Python的童靴几点建议,希望能帮到大家!
1、有明确的目标
古之立大事者,不惟有超世之才,亦必有坚忍不拔之志,故而学Python也要先明确自己的目标。
2、有系统的学习
在此,以CDA数据分析的Python课程大纲为例,给大家简单提供一个学习规划:
第一阶段:Python概述与基础
学习Python的基础和介绍。
第二阶段:Python数据清洗
包括Numpy数组和矢量计算等与Pandas基础&进阶。
第三阶段:Python爬虫
学习Python爬虫的知识以及实践等。
第四阶段:Python数据可视化
学习使用Matplotlib、Seaborn等包对数据进行探索式分析和可视化。
第五阶段:Python机器学习
Python机器学习的一些经典算法与案例实战。
3、适当的学习手段、工具、素材
学习手段基于学习要求,规划和学习时都要严格实施,工具和素材可参考CDA数据分析就业班的Python部分。
4、良好学习心态
第一是坚持;第二多撸代码;第三不要怕错。建立好的学习心态,树立走上人生巅峰的信心。
Python不再只是数据分析师或编程猿等专业人士的技能,普通职场人士也可利用它各种功能强大的模块和包,使工作更舒适,大幅提升办公效率。
接下来,以Python办公自动化方向为入口,给大家展现下Python那些“神仙操作”。
一行代码读取整页数据
当你拿到PDF或WORD格式文件,需要整理成表时,手动一份份处理,不仅费时、费力、费眼,还容易出错。
但这些在Python看来,通通不是问题,只需几行代码,就你喝口茶的功夫,就能全部搞定。
另外,面对有固定模式,内容却因人而异的定制化邮件发送,传统方法是打开邮箱,将内容复制到相关栏,点击“发送”即完成一封。
机械性的复制粘贴,不仅耗时,而且一旦信息和邮箱地址复制错误,会给公司或机构造成不良后果,甚至导致客户投诉。
这时,你只要花几分钟,写上一段Python代码,让电脑按照要求,准确无误地自动发送上千上万封定制邮件。
另外,Python还能帮你自动整理文件、处理报表、填写合同、回复信息、批量转换格式、拆分或合并表格……
所谓“君子善假于物”,在职场上要懂得利用现代化工具,从而解放自己,将更多时间花在真正有意义的学习和思考上,为企业带来实效。
财务专员小蓝用Python代码处理了大量财务数据,给公司大幅节约了人力、时间等成本,收获了丰厚奖金,并涨薪30%。
月薪3000的行政小姐姐,因在微博上分享编写的Python代码,被大型数据分析公司直接挖走,月薪10K起。
当你发现和家人吃饭、和朋友聊天、愉快玩耍的时间都成了“加班”,就要开始反思自己是否已沦为“搬砖工”,马云所说的那种随时会被取代的工具。
一切重复皆可搞定的Python,可助你摆脱职场“忙忙忙”困境,让你有更多时间思考和总结经验,提高你的执行力和创新力,从而扫除被替代的威胁。
CDA联合创始人曹鑫老师认为:工作遭遇问题时,脑中立即弹出快速的解决方案,如此才算活学活用。
Python自动化不单单提高了工作效率,还在潜移默化完善着使用者的逻辑能力,将其塑造成时下抢手的高效、高能、高知型人才,所以花点时间学Python物超所值。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30