
SPSS聚类分析是否需要对数据进行标准化处理?
为了从不同的角度反映一组数据的特征,我们往往追求更多的指标,这些数据单位不同,数量级也不同,这就需要我们在开始分析之前 对数据进行标准化处理。聚类分析就经常遇到,因为聚类就是利用多个指标来对样本进行分类的统计方法。
那么,SPSS聚类分析是否需要对数据进行标准化处理呢?经常有人提问。
首先,从聚类分析的概念上来判断。
聚类的要求是同一类的样本有较大的相似性,不同类的样本有较大的差异性。那如何才算是有相似性呢?这里经常用的就是判断点与点之间的距离是不是很近或者有相关性,只要是用距离来判断,就涉及到不同指标的运算,而量纲和数量级上的差异对距离的判断有很大的影响,为了消除这种影响,因此在聚类前需要对数据进行标准化处理。
有一种例外情况,如果采用相关系数来衡量个体的相似性,可以不做标准化处理,也留给大家讨论。
其次,我们从聚类操作对话框来看。
SPSS软件封装了3种聚类方法,TwoStep、Kmeans、Hierarchical。
先来看TwoStep聚类,如下图对话框。
SPSS明确指出需要对连续变量进行标准化操作,这个选项非常适合初学者,把数据质量的因素直接考虑进去,我们只需要按照提示一步步来完成即可。
再来看Kmeans聚类,如下图,
我们发现,SPSS并没有在这个过程中预装标准化操作,因此对于刚接触SPSS的人来说,就会造成一定的困惑或者麻烦,会认为完全按照spss的菜单项操作就可万无一失,从这一例子来看,SPSS初学者一定不能有这样的惰性思维,SPSS为我们提供便捷菜单操作的同时,我们仍然不能放弃基本的数据分析思维。
再看Hierarchical聚类过程,对话框如下图,
spss同样预装了数据标准化操作,SPSS菜单操作的便捷一目了然。
总结
讲到这里,大家对这个问题应该比较清晰。小兵再次提醒大家,不管SPSS是否在菜单选项中提供数据标准化处理,作为分析师,首先我们要有提前标准化的思维习惯,数据标准化也是数据预处理中的一项重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22