京公网安备 11010802034615号
经营许可证编号:京B2-20210330
· 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
· 英特尔携杭州诚道科技构建智能交通
· 数据挖掘在青岛银行:提升银行交易性能、简化运营和管理
· 百度大脑PK人脑 大数据押高考作文题
培训安排
Python数据挖掘培训安排:
|
项目名称 |
Python数据挖掘 |
|
时间-北京 |
2016年1月23-31日/@北京 周六日(共4天) |
|
时间-远程 |
2016年1月23-31日/@远程 周六日(共4天) |
|
价格(元) |
全程:4000(现场)/2900(远程) |
|
优惠 |
1. 参加过论坛其他现场班老学员9折优惠 2. 同一单位三人及以上报名9折优惠 3. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件) 以上优惠不可叠加 |
|
关于证书 |
可自愿申请工信部数据分析师证书,申请费用400元 |
|
现场班福利 |
全套视频资料,咖啡茶歇,论坛币(500个) 【远程班福利同上】 |
课程讲师
常国珍,会计学博士、社会学硕士,毕业于北京大学人口所,目前就读于北大光华管理学院,SAS公司数据挖掘与统计分析课程讲师。曾为德勤管理咨询高级数据挖掘咨询顾问,SAS官方培训资深讲师,2014年SAS软件大赛判卷人,曾以数据挖掘工程师身份就职于亚信科技(中国)有限公司市场部。具有八年的数据挖掘实战经验,主攻分类模型,涉及客户精准营销、信用评估、价值提升、欺诈侦测和流失预警等数据挖掘主题,尤其熟悉银行个人客户精准营销的建模工作。
授课方式
1. 现场授课使用Python和Spss软件进行数据挖掘,多媒体互动,现场答疑。
2. 时间:上午9:00—12:00,下午13:00—16:30,16:30—17:00现场答疑。
3. 现场提供免费午餐,咖啡茶饮。
4. 赠送讲义,数据 ,现场班视频。
授课对象
1)各行业数据分析、数据挖掘从业者
2)金融、电信、零售、医学等各行业业务数据分析人员
3)ZF事业单位大数据及数据挖掘项目人员
4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5)对数据挖掘感兴趣的各界人员
授课目标
1、系统掌握数据分析/挖掘的基本理念、方法
2、掌握商业数据分析的分析方式、流程,具有实际开展数据分析/挖掘项目的能力
3、掌握商业数据分析/挖掘报告的展现技能
课程大纲
|
第一讲 1.2Python数据类型、数据语法、运算符 |
第二讲 2.1 函数、模块、异常与文件处理 2.2 函数与重要Python包 2.3 数据挖掘常用包介绍 |
|
第三讲 3.1 特征变量选择:主成分和因子等 3.2 样本聚类 3.3 案例1:汽车类型聚类与地域购买偏好分析 |
第四讲 4.1 决策树模型 4.2 模型验证+组合算法 4.3 案例2:电信离网用户预警 |
|
第五讲 5.1 最近邻域法(KNN)、MBR、样条曲线 5.2 线性回归与岭回归、可实现的Lasso算法 5.3 案例3:婚恋网站被约会可能性预测 案例4:零售业客户价值预测模型 |
第六讲 6.1 逻辑回归;广义线性模型 6.2 支持向量机 6.3 案例5:新闻内容分类 |
|
第七讲 7.1 文本分析流程概述 7.2 常用字符串函数与正则表达式 7.3 分词与词频统计 7.4 案例6:新闻内容分类 案例7:构造新闻热点词指数 |
第八讲 8.1 社会网络分析 8.2 案例8:电信客户交友圈与流失预警 案例9:电信再入网客户身份指纹识别
|
在线报名
1.在线填写报名信息;
2.给予反馈,确认报名信息;
3.网上缴费;
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29