京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何做商业分析_数据分析师考试
大数据实时、海量而全面,可以提供业务的全部细节,这是结构化的市场调研小数据非常欠缺的特质,正因为这一点,很多人都说大数据时代,市场调研即将走向末世。而如果需要了解消费者的态度或行为与态度之间的因果关系,通过大数据目前为止确实是不行的,而这些反而是厂商、品牌最关注的问题。在这一方面,市场研究以小样本数据可以给予补充。
百分点在探索数据决策化的商业分析道路上,以洞察消费者为目的,带着小数据的思维用大数据构建解决方案,实现大小数据的融合。
首先将企业web站的第一方数据、微信、邮件和APP等数据和百分点全网数据进行打通,然后搭建个性化的用户标签体系,打造360度全景画像。基于这样的数据,我们从用户被获取、成熟到衰退,这样一个完整的用户生命周期去做模型平台的建模分析,帮助企业实现客户价值潜能的最大化。
通过归因模型和聚类分析模型,分别去分析获取新增用户时哪些渠道比较好,以及把客户进行细分,精准识别人群特征。RFM模型可以去做用户价值群体的运营,通过用户忠诚度和活跃度模型进一步识别价值群体,还有识别意见领袖的社会网络分析模型,寻找传播节点等。最后,当用户走向衰退期,通过流失预警模型去分析哪些因素导致用户流失,哪些用户是容易流失的用户群体。
百分点为客户的网站提出的运营分析,主要通过营收成本指标、访客行为度量和商业内容兴趣指标衡量客户的网站。用户分析主要围绕人口统计学特征、日常媒体接触习惯和网购行为加以分析。

产品上市之后实时追踪多渠道销量,并且和同类产品的基准值进行比较,判断问题所在,调整营销战略。

根据客户需求,运用RFM模型将人群细分为不同价值群体,分别看他们的搜索、浏览和购买情况,发现问题,通过市场调研深度挖掘问题产生的原因。

关联规则模型可以找到品类或具体商品之间共同购买的可能性,为品牌拓展产品线提供建议,也可以为渠道、品牌的促销活动中的打包销售提供建议。

对于营销的其他几个要素:价格、渠道、促销,我们也可以通过大数据提供解决方案。Gabor Granger是市场调研中比较基础的定价研究方案。在大数据环境下,可以用商品最初上市时的数据为参考,对价格进行再次调整。
对于更多广告主来说,合理规划渠道营销预算,实现ROI(投资回报率)最大化是每个人的最大目标。然而面对复杂媒介类型,更多的广告主都无从下手。如何优化渠道以提高ROI、哪个媒介投放效果是合适我的营销产品/活动?

随着全路径效果追踪的出现,广告主可以更清楚了解每一转化背后的过程是如何发生的。归因模型的优势在于:能以数字化的方式将每一渠道的价值具体反映出来。它不仅可以帮助广告主有效调控媒介渠道,并且在分配营销预算、优化渠道从而提高ROI方面也有显著作用。要将归因模型的价值最大化, 广告主应首先清楚了解及定立明确的市场推广目的,不论是提升转化量、增加用户注册或下载购物折扣券等。接着, 广告主应了解应如何将分数给予每一对转化有贡献的渠道, 根据不同的应用场景选择不同的归因模型。

对于销售渠道,可以把每个渠道针对某一产品/某类产品的销售数据与行业平均值进行比较。更简单的例子是,可以通过SWOT模型分析优劣势为渠道商找到差异化经营思路,或者为厂商提供每种商品在何种渠道销售的建议。
很多客户都希望了解消费者全网媒体浏览行为,根据浏览时段、不同设备研究,做活动。可以根据浏览时段、使用设备的趋势以及日常接触媒体类型做出相应的营销活动渠道、方式、内容的调整。
此外,大数据还可以向品牌提供服务。除了最基本的统计描述分析和对比外,也可以通过分布聚类模型考察搜索行为,了解品牌竞争情况,以及消费者的最需要的信息。同时,借用市场研究的品牌研究中经常使用的方法进行分析,比如品牌位置、品牌优势点的分析。
大数据商务分析偏重对数据本身的分析,属于数据驱动型的分析方法,而市场调研是以解决每一个具体问题为出发点,创造针对营销问题的解决模型。在市场调研中,定性研究以心理学为基础,虽然脱离狭义的“数据”这一概念,但是更适合探究消费者深层的心理原因与偏好,获取这方面的广义“数据”。而大数据商务分析则一切以数据出发,相对来说,缺少对“原因”的研究,大小数据融合是大数据时代商业分析的必经之路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21