
大数据怎样在财务系统提升数据价值(1)_数据分析师考试
大数据已经成为一个商业流行词。随着众多企业领导者逐渐了解其风险和机遇,它的前景和隐患正日益受到世界各地企业的关注。
产生和存储的数据量正在迅速增长,甚至呈指数增长。根据预测,数据量每两年就可能翻倍。同时,从业人员能够运用新的高级分析技术,来连接和查询原先分散的数据集,只要这些数据集中含有数据。
新数据和新分析的结合,正和企业运作的其他深层转变一同改变着商业局面。企业变得更加灵活,更具流动性,更加开放:它们的复杂性正日益上升。
随着大数据和大数据分析的影响带来商业上的转型,财会专业人士的角色也同样会发生变化。那些能够发现数据模式、将其转化为引人注目的战略故事的专业人士,将处于21世纪商业的核心位置。
会计师和财会专业人士已经发现了大数据的潜力。2012~13年ACCA技术趋势调查显示,78%的受访者表示,他们希望未来两年内大数据得到广泛应用。该调查还表明,在显着改变商业和会计行业局面的潜力方面,大数据堪称第二大最具影响力的技术趋势。
要实现大数据在财会行业的广泛应用,需要新能力、新度量和新的思维方式。
新类型的数据也将带来全新挑战:未来十年内,衡量和评估数据的新标准将得到发展,在报告、建模和预测中将采用全新的、更多样化的数据集。同时也存在不太好衡量的问题,例如涉及道德和隐私的问题。围绕这些问题的冲击和影响展开的辩论才刚开始——但如果不处理好这些问题,后果将不堪设想。
本报告全面描绘了未来5至10年内大数据对财会行业的影响。核心问题是:“未来5至10年内大数据将对企业产生哪些影响,它将为财会行业带来哪些机遇和挑战?”作为“未来思维”的一部分,本报告并非声称预测未来,而是力求确定和研究未来几年内可能对全球财会行业产生影响的大数据趋势。
大数据和商业未来
大数据拥有几乎改变商业的各个方面的潜能——从研发到销售和营销再到供应链管理,还拥有为增长提供新机遇的潜力。
然而,要获得这些效益并非易事。数据集能创造价值,也能摧毁价值。它们需要有效及专业的管理,并需要企业的大力投资。
什么是大数据?
大数据主要指通过信用卡、客户会员卡、互联网、社交媒体以及日渐普及的无线传感器和电子卷标等设备和技术不断收集的海量资料。大数据是一种委婉的说法,一种经过仔细斟酌而决定的简称,它指的是那些数量之巨大、内容之复杂、变化之迅速到无法用Microsoft Excel之类的标准软件来处理的数据集。
Gartner是美国一家信息技术研究权威和咨询公司,早在2001年就首次开发了大数据模型。它的“3V”模型包含“数量(volume)、速率(velocity)和种类(variety)。”
Gartner公司在2012年正式作出定义:“大数据是指数量大、变化快和/或多样化的信息资产,需要新的处理形式,从而强化决策,促进洞察力以及优化流程”。
同时,也存在其他不那么正式的定义。随着大数据成为主流,一旦其庞大规模成为“常态”,很有可能出现全新的定义特征。
大数据的兴起
从Gartner的定义可知,大数据拥有增值的潜力。企业正利用商业智慧和数据挖掘工具来提高效率、发现新机遇、为客户提供更好的产品和服务,以及预测未来的行为模式。不出所料,“价值”一词正被热捧为Gartner “3V”模型中的一个新“V”。
机遇并不专属于大企业。Google Analytics和Tableau图表绘制等以云为基础的在线平台意味着中小企业无需进行大量资本投资就能够从大数据中挖掘出商业见解。这些不受大型旧有系统限制的企业有时能够跳过“旧技术”,几乎从一开始就使用大数据。
大数据的商业潜能如此之大,以至于它如今被誉为“新型石油”,其在信息领域的作用堪比石油这种曾在19和20世纪对经济产生重大影响的自然资源。
这一比喻不无道理,但尚有缺陷。不像石油,大数据几乎可以无限量供应,且“可再生”。它的数量每年都在增长,而且呈数量级增长。十年前,人们谈论的是千兆字节的资料;现在他们谈论则是兆兆字节,整整增加了一千倍。
未来10年数据容量持续增长的关键是所谓的“物联网”,也称为“万物互联”(IoE)。新技术——例如调频识别技术(RFID)和近场通信(NFC)3技术——正不断将物体与互联网相连,允许信息在二者之间传递。纽约市场情报公司ABI研究预测,到2020年将有超过300亿的设备连接到无线网络(ABI研究,2013)。
大数据对商业的意义
大数据分析除了使企业能够着眼于历史数据之外,亦能“审视”新兴趋势所处的环境。因此,它有潜力改变新产品开发、市场定位和定价等流程的成本和效益。
大数据被提炼和完善为可付诸实施的商业见解,并被细分和应用于每个细微的决策过程,因此成为了兼具商业性和战略计划特性的工具。
然而,信息不仅是工具:它本身就是一种商业机遇。在从专有数据中开发新产品和新服务的趋势中,这点得到了最明显的体现。
目前,企业正在通过出售自己的资料来创造新的收入来源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23