京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据怎样在财务系统提升数据价值(1)_数据分析师考试
大数据已经成为一个商业流行词。随着众多企业领导者逐渐了解其风险和机遇,它的前景和隐患正日益受到世界各地企业的关注。
产生和存储的数据量正在迅速增长,甚至呈指数增长。根据预测,数据量每两年就可能翻倍。同时,从业人员能够运用新的高级分析技术,来连接和查询原先分散的数据集,只要这些数据集中含有数据。
新数据和新分析的结合,正和企业运作的其他深层转变一同改变着商业局面。企业变得更加灵活,更具流动性,更加开放:它们的复杂性正日益上升。
随着大数据和大数据分析的影响带来商业上的转型,财会专业人士的角色也同样会发生变化。那些能够发现数据模式、将其转化为引人注目的战略故事的专业人士,将处于21世纪商业的核心位置。
会计师和财会专业人士已经发现了大数据的潜力。2012~13年ACCA技术趋势调查显示,78%的受访者表示,他们希望未来两年内大数据得到广泛应用。该调查还表明,在显着改变商业和会计行业局面的潜力方面,大数据堪称第二大最具影响力的技术趋势。
要实现大数据在财会行业的广泛应用,需要新能力、新度量和新的思维方式。
新类型的数据也将带来全新挑战:未来十年内,衡量和评估数据的新标准将得到发展,在报告、建模和预测中将采用全新的、更多样化的数据集。同时也存在不太好衡量的问题,例如涉及道德和隐私的问题。围绕这些问题的冲击和影响展开的辩论才刚开始——但如果不处理好这些问题,后果将不堪设想。
本报告全面描绘了未来5至10年内大数据对财会行业的影响。核心问题是:“未来5至10年内大数据将对企业产生哪些影响,它将为财会行业带来哪些机遇和挑战?”作为“未来思维”的一部分,本报告并非声称预测未来,而是力求确定和研究未来几年内可能对全球财会行业产生影响的大数据趋势。
大数据和商业未来
大数据拥有几乎改变商业的各个方面的潜能——从研发到销售和营销再到供应链管理,还拥有为增长提供新机遇的潜力。
然而,要获得这些效益并非易事。数据集能创造价值,也能摧毁价值。它们需要有效及专业的管理,并需要企业的大力投资。
什么是大数据?
大数据主要指通过信用卡、客户会员卡、互联网、社交媒体以及日渐普及的无线传感器和电子卷标等设备和技术不断收集的海量资料。大数据是一种委婉的说法,一种经过仔细斟酌而决定的简称,它指的是那些数量之巨大、内容之复杂、变化之迅速到无法用Microsoft Excel之类的标准软件来处理的数据集。
Gartner是美国一家信息技术研究权威和咨询公司,早在2001年就首次开发了大数据模型。它的“3V”模型包含“数量(volume)、速率(velocity)和种类(variety)。”
Gartner公司在2012年正式作出定义:“大数据是指数量大、变化快和/或多样化的信息资产,需要新的处理形式,从而强化决策,促进洞察力以及优化流程”。
同时,也存在其他不那么正式的定义。随着大数据成为主流,一旦其庞大规模成为“常态”,很有可能出现全新的定义特征。
大数据的兴起
从Gartner的定义可知,大数据拥有增值的潜力。企业正利用商业智慧和数据挖掘工具来提高效率、发现新机遇、为客户提供更好的产品和服务,以及预测未来的行为模式。不出所料,“价值”一词正被热捧为Gartner “3V”模型中的一个新“V”。
机遇并不专属于大企业。Google Analytics和Tableau图表绘制等以云为基础的在线平台意味着中小企业无需进行大量资本投资就能够从大数据中挖掘出商业见解。这些不受大型旧有系统限制的企业有时能够跳过“旧技术”,几乎从一开始就使用大数据。
大数据的商业潜能如此之大,以至于它如今被誉为“新型石油”,其在信息领域的作用堪比石油这种曾在19和20世纪对经济产生重大影响的自然资源。
这一比喻不无道理,但尚有缺陷。不像石油,大数据几乎可以无限量供应,且“可再生”。它的数量每年都在增长,而且呈数量级增长。十年前,人们谈论的是千兆字节的资料;现在他们谈论则是兆兆字节,整整增加了一千倍。
未来10年数据容量持续增长的关键是所谓的“物联网”,也称为“万物互联”(IoE)。新技术——例如调频识别技术(RFID)和近场通信(NFC)3技术——正不断将物体与互联网相连,允许信息在二者之间传递。纽约市场情报公司ABI研究预测,到2020年将有超过300亿的设备连接到无线网络(ABI研究,2013)。
大数据对商业的意义
大数据分析除了使企业能够着眼于历史数据之外,亦能“审视”新兴趋势所处的环境。因此,它有潜力改变新产品开发、市场定位和定价等流程的成本和效益。
大数据被提炼和完善为可付诸实施的商业见解,并被细分和应用于每个细微的决策过程,因此成为了兼具商业性和战略计划特性的工具。
然而,信息不仅是工具:它本身就是一种商业机遇。在从专有数据中开发新产品和新服务的趋势中,这点得到了最明显的体现。
目前,企业正在通过出售自己的资料来创造新的收入来源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06