
数据分析和的市场调研方法和方式_数据分析师考试
产品经理,你对用户的需求了解多少呢?你知道用户想要什么样的产品吗?你想知道用户将会如何看待你的产品吗?你想知道你设计的产品在用户中的口碑如何吗?……
是的。每一个产品经理都希望在产品开始立项设计前,得到用户最真实的需求,为自己的产品设计提供良好的支撑;每一个产品经理都希望自己设计的产品得到用户的认可和亲睐;每一个产品经理都希望用户能在使用产品的过程中不断反馈关于产品改进的意见和建议……那么,我们如何才能得到用户的前期意见和后期反馈呢?
这个时候我们需要的是数据的支撑,只有数据才能让一切更有说服力(前提是真实、有效的数据)、只有数据才能让我们更清楚地了解到我们想法的可行性……
既然这样,那数据从何而来?这自然少不了市场调研,只有通过对用户的调研才能收集用户最基础的用户数据、从最基础的数据上进行分析,从而了解用户的真实需求。那么,作为产品经理,我们应该如何对市场或用户进行调研呢?调研的方式和方法有哪些?对于调研的数据我们如何进行数据分析呢?数据分析的方法和方式有哪些呢?
针对以上问题
一、 产品经理为什么要做市场调研?调研的目的是什么?
PS:我们在做市场调研前,必须有一个自己的调研思路:调研目的、调研对象、需要收集的数据、需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。
1、通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD;
2、为领导在会议上PK提供论据;
3、提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会进而系统、客观地识别、收集、分析和传播营销信息,及时掌握一手资源;
4、验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务;
5、了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求;
6、找准产品机会缺口,然后衡量各种因素,制定产品战略线路;
7、调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等;
8、对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
二、 市场调研的方式方法有哪些?怎样确定调研的维度?
1、问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查;
2、做人物角色分析:设置用户场景、用户角色进行模拟分析;
3、情况推测分析;
4、调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)
三、 如何整理市场调研的数据?
PS:对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。
通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢?
1、将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析;
2、封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西;
3、定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理;
4、深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
四、 如何书写市场调研报告?
对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。
1、对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现;
2、分析用户当前现状,用户对产品的需求点;
3、报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容;
4、根据调研的时候的思路,将报告逐一完善,将数据分析的结论图表化,得出自己的结论总结出趋势和规律
五、 数据分析的方式方法有哪些?
1、数据分析需要掌握数据统计软件和数据分析工具(分析工具如SPSS等);
2、数据分析的主要方法有:
对比分析法:将两个或两个以上的数据进行对比分析,分析其中的差异,从而揭示这些事物发展变化的规律和情况。对比分为横向对比和纵向对比。
结构分析法:被分析研究总体内各部分与总体之间进行对比分析的方法,即总体内各部分所占的指标。
交叉分析法:同时将两个有一定联系的变量及其值交叉排列在一张表内,使各变量值成为不同变量的交叉点,一般采用二维交叉表进行分析。
分组分析法:按照数据特征,将数据进行分组进行分析的方法。
其他还有比如漏斗图分析法、杜邦分析法、矩阵关联分析法等等。
PS:数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
六、 数据分析报告如何指导产品经理进行产品设计?
1、根据调研结论 确定产品核心功能
2、把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新
3、评估解决方案的可行性。根据实施的结果再去评估解决方案是否真的可行?是否还需要再改进,依此类推
4、通过数据进行分析,得出用户的行为规律,为产品提供支撑
5、日常的运营分析,及时发现产品问题
6、产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的BUG、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25