
上药信谊实现精准实时数据分析
企业发展越快、规模越大,管理模式的问题也日益表现突出。尤其,上海信谊目前已建立供应链系统、财务系统和人力资源等基础信息化系统,在系统中维护了运营所需的各种基础数据。但由于这些系统是随着业务发展逐步建设的,彼此之间信息孤岛现象较为严重,难以实现数据信息的共享、数据挖掘分析,及以统一界面展示管控要素。
为了实现集团业务集中管理辅助决策的信息化目标,上药信谊计划从原有的分散与集中管理相结合的模式,发展成集中管理新模式。在用友公司BQ团队的帮助下,上药信谊进一步规划了经营管理信息化平台全面集中的分步实施策略,为企业产品生态圈建设,抢抓发展机遇,突破信息化瓶颈,奠定了坚实的信息化基础。
▲分析首页
为了构建精准实时的数据分析系统,上药信谊和用友商业分析团队在现有ERP、项目管理系统及各类重要非结构化的业务数据应用之上,确立了BI系统的建设范围,共同规划了数据整合层、语义层、分析建模层、应用展现层四个层面的架构。以数据为着眼点,为支撑企业快速发展搭建起坚实后盾。
第一,数据整合层。是BA系统的数据来源,包括财务系统、各业务系统以及外部数据,这些数据通过数据信息管理工具,如ETL抽取到分析数据引擎AE,数据整合的主要作用是将分布在不同物理区域、不同系统中的数据首先通过规范编写的ETL程序或其它方式进行抽取,集中。
第二,语义层。商业分析平台,通过可视化的拖拽功能,将数据库中的指标数据建立分析模型,实现对数据的分析和监控。
第三,分析建模层。通过用友BQ以往的项目经验和研究,利用各种分析方法,建立了满足企业运营的采购、库存、销售、财务等分析模型,全面监控和分析运营情况,分析模型层主要是利用实时数据处理工具将抽取后的数据汇总到数据仓库中,并通过分析引擎将数据仓库中的数据根据业务归口不同进行归纳、汇总,如财务、营销、人力资源等,主要以报表和查询分析的方式将数据仓库中的数据展示出来。
第四,应用展现层。在展现层将不同特点的业务数据利用多种可视化手段展示出来,如智能查询、图形化报表、多维分析,自定义仪表盘等,是管理决策者和管理者观察企业的窗口。完整地展现了领导重点关注的决策支持系统的指标数据。决策支持系统的界面还可由业务人员根据不同的需求实现个性化定制,采用拖拉拽的操作方式,在页面上放置不同的指标内容,即可建立自己关注的指标分析界面。
▲
销售收入分析
考虑到企业高层领导日常业务繁忙,需要随时随地获悉各分支机构的第一手经营信息,用友BQ将其业务分析展现做到移动端,方便领导查阅。
上药信谊目前已实现了重要业务的数据整合与分析。在分析首页可展示全厂经营分析全貌,包含销售收入、利润、费用、应收周转、存货周转等各项总部考察指标完成情况,并可直观的发现数据问题;通过全产品查询,建立了一套根据产品编码便可查询产品价格、成本、预算、投保价格情况;从首页穿透可查看信谊总厂生产的全部产品的区域销售业绩,并能钻取挖掘当前及历史销售数据变化趋势,为企业自检销售目标完成率及合理优化产品结构提供了参考依据;通过存货周转分析,分析企业的存货周转率,以反映企业库存存货的周转速度,判断存货的流动性及存货资金占用量是否合理,促使企业在保证生产经营连续性的同时,提高资金的使用效率,增强企业的短期偿债能力;另外,可进行利润统计分析,费用对比分析、应收周转分析等。
用友BQ商业分析项目的建成使得上海信宜无论在数据管理的规范性,还是数据分析领域的先进性,与同行业竞争对手相比,又一次起到了领头羊、排头兵的作用,其顺利上线不仅标志着企业朝着打造数字化上药的目标又向前迈进了一步,同时还表明企业通过推进信息化建设工作实现集团化整体管理工作从优秀到卓越的提升。
新一代用友BQ商业分析整体解决方案,通过企业级数据平台的搭建,达到统一数据标准、共享信息资源的数据管理目标,为进一步进行数据分析及挖掘奠定良好的数据基础;同时,通过先进的数据可视化技术,根据现有数据进行ETL处理,把不同数据形式进行整合及展现,直观的将企业经营现状及未来发展趋势展现到企业管理者面前,为管理者的明智决策提供可靠的数据支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18