
什么样的企业更加需要重视数据分析呢
我根据经验总结了十大特征,具有如下十大特征之一或者同时具有多个特征的企业,需要重视数据分析,将数据分析作为企业竞争力提升的关键要素之一。
一、数据和信息量巨大的企业:企业在运营过程中能够采集和积累大量的数据和信息,如客户数据、产品数据、交易数据、原材料供应数据等等。电商、传统零售、餐饮、连锁等企业具有该特征。通过从大量的数据中挖掘潜力和数据的价值,能够大幅度改善企业的经营绩效。
二、资产密集型企业:资产密集的企业,需要充分发挥资产的价值,在数据分析的基础上,能够让企业充分挖掘资产价值潜力,提升企业经营绩效。
三、劳动密集型:劳动密集型的企业,通过数据分析,建立效率模型,在劳动力配备、劳动力潜力、劳动力闲置(idle time)、不作业分析、生产损失(loss analysis)、等等方面的数据分析,可以更好地利用劳动力,发挥效率,提升本来就不高的利润率。
四、多元化、跨区域经营的企业:多元化,特别是相关多元化的企业,需要利用数据分析,发挥多元化产业间的协同效应;跨区域经营,特别是有国际化的企业,需要通过数据分析,将企业的管理效率进一步提升。
五、多产品或多品牌经营的企业:通过数据分析可以分析各个产品或者品牌的效率效能,将产品组合或者品牌组合的合力发挥到极致,发挥组合的正效能,降低产品组合间的负影响。
六、决策风险高的企业:任何的决策对企业的战略绩效影响非常大,风险非常高,需要企业在做出重大决策时,不仅仅要谨慎、科学,还要多方论证,充分分析。因此对数据分析要求高。
七、决策响应速度要求高的企业:决策的响应速度关乎企业的生存,所以需要在短时期内处理大量的信息和数据,容不得长时间论证,为了保证决策的正确性,必须在平时做好功课,建立完善的数据分析系统,在需要做出决策的时候,有充分的数据分析作为保障。
八、流程衔接要求高的企业:企业在价值链上跨度大,需要上下游充分地合作,流程上相互间的衔接协作,保证效率,这要求各个环节信息对称,数据分析充分。通过数据分析,也能够清晰地认识如果出问题,是哪里出了问题,应该如何解决问题。发现问题所在,是解决问题的钥匙。
九、分权决策型的企业:分权而治,给分公司或业务单元充分的授权,能够提高企业针对业务特征和地方的特点,发挥地方的优势。但是,也会带来风险,数据分析能够降低信息的不对称性,让分权决策更加合理和科学,管理更加高效。
十、企业所处的环境竞争激励:在竞争越充分的市场上的企业越加需要数据分析来挖掘企业的潜力、资源潜力、提升竞争力,包括业务模式创新、产品创新、改善客户体验等以在激烈的市场上能够获得更高的竞争优势,因此更加需要将数据分析作为提升竞争力的关键要素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23