京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据(Big Data)仿佛一夜之间风靡全球,既宣告了一个时代的到来又显然成了一个时代的标志。其实大数据时代的到来是发展的必然。大数据就是海量数据、巨量资料,指的是所涉及的数据量、资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为特定目的服务的资讯。
正如维克托•迈尔舍-恩伯格及肯尼斯•库克耶编写的畅销着作《大数据时代》中所说的:大数据不是用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法。因而,大数据具有的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。随着信息技术的发展,尤其是“互联网时代,社交网络、电子商务与移动通信把人类社会带入了一个以“PB”(1024TB)为单位的结构与非结构数据信息的新时代”。 所以,在许多场景,大数据甚至通常就是用来形容大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费高昂的成本,而且难以实现预期目标。面对如此庞杂的数据和信息,传统的计算机的处理能力实际上也难以满足。
因此从另外一个角度来看,正是运算方法和运算能力的发展到了云计算的阶段才使得大数据的分析使用成为可能。“以云计算为基础的信息存储、分享和挖掘手段,可以便宜、有效地将这些大量、高速、多变化的终端数据存储下来,并随时进行分析和计算。”云计算是继1980年代大型计算机到客户端-服务器的大转变之后的又一巨变。“数据,这个21世纪人类探索的新边疆,正在被云计算发现、征服。”而智能交通系统(ITS)作为未来交通系统的发展方向,其本身就是将先进的信息技术、数据通讯传输技术、电子传感技术、控制技术及计算机技术等有效地集成运用于交通管理之中,从而建立一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。ITS综合了交通工程、信息工程,通信技术、控制工程、计算机技术等众多科学领域的成果,可以有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率。而它的关键支撑就在于新一代的信息技术:移动通信、宽带网、RFID、传感器、云计算必然是智能交通的核心元素。
智能交通发展至今,各地采集的数据浩如烟海,存在巨大的潜力和价值,亟待处理和挖掘。不容置疑,随着大数据时代的到来,智能交通也必然会产生重大变化,也将面临重要的发展机遇,智能交通产业发展也将迎来新的机遇。年初,在北京召开的2014中国智能交通行业发展趋势分析会上,业界对大数据在智能交通行业的运用趋势进行了分析判断。准确把握大数据时代的特征,深入分析对智能交通的影响和作用,对于在新的高度和起点上改善我国的交通状况有着非常重要的意义。
如何看待大数据与智能交通的关系
既然时代潮流不可阻挡,那么我们该怎样认识大数据以及大数据与智能交通的关系呢?大数据只是一次简单的技术革新还是手段的升级换代呢,还是根本意义上的变革革命呢?前面对于大数据产生背景已经说到,大数据与云计算密切相关。大数据必然无法用单台的计算机进行处理,即使一般的网络计算能力也难以达到,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,必须依托云计算的分布式处理、分布式数据库、云存储或虚拟化技术。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。也有学者认为大数据与云计算是一个问题的两面:一个是问题,一个是解决问题的方法。无论是从技术层面看,还从方法论意义上说,笔者认为大数据的出现都具有美国科学哲学家托马斯•库恩在其《科学革命的结构》中确立的范式和范式转换的意味。范式,是指在一个时代里人们对事物具有支配地位的看法。特别是指理应成为处理科学上的问题的前提、在某个时代人们公认的有系统的思想体系。范式的变革不可能是知识的直线积累,而是一种创新和飞跃,一种科学体系的革命。人们已经逐渐认识到世界的本质就是数据。所以维克托指出大数据时代的经济学、政治学、社会学和许多科学门类都会发生巨大甚至是本质的变化和发展,进而影响人类的价值体系、知识体系和生活方式。这难道不是范式转换吗!所以我们完全有理由相信大数据是一场根本性的革命,从思维方式到生活方式都会随之转变。正如《大数据时代》开宗明义所说:大数据是一场生活、工作与思维的大变革。开启了一次重大的时代转型。(文章来源:CDA数据分析师)
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。智能交通的发展以“保障安全、提高效率、改善环境、节约能源”为目标已经受到各国的重视,我国的智能交通也实现了快速发展,许多技术手段都达到了国际领先水平。但是,问题和困境也非常突出,从各个城市的发展状况来看,智能交通的潜在价值还没有得到有效挖掘:对交通信息的感知和收集有限,对存在于各个管理系统中的海量的数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。这虽然有各地在建设理念、投入上的差异,但是整体上智能交通的现状是效率不高,智能化程度不够,使得很多先进技术设备发挥不了应有的作用,也造成了大量投入上的资金浪费。这其中很重要的问题是小数据时代带来的硬伤:从模拟时代带来的管理思想和技术设备只能进行一定范围的分析,而管理系统的那些关系型数据库只能刻板的分析特定的关系,对于海量数据尤其是半结构、非结构数据无能为力。
尽管现在已经基本实现了数字化,但是数字化和数据化还根本不是一回事,只是局部的提高了采集、存储和应用的效率,本质上并没有太大的改变。而大数据时代的到来必然带来破解难题的重大机遇。大数据必然要求我们改变小数据条件下一味的精确计算,而是更好的面对混杂,把握宏观态势;大数据必然要求我们不再热衷因果关系而是相关关系,使得处理海量非结构化数据成为可能,也必然促使我们努力把一切事物数据化,最终实现管理的便捷高效。另外,大数据的世界性特征最明显,也在瞬间拉近了我们和西方发达国家的距离,我们有可能把握还这个重大机遇迎头赶上甚至在某些方面超过西方发达国家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27