
大数据时代如何做好反洗钱工作
当前数据比以往任何时候都更加根植于我们生活中的每一个角落。无论是国内还是国外,无论是学界、商界还是政界,都在谈论大数据、畅想大数据。大数据正带来深刻的思维变革、商业变革和管理变革。大数据时代,反洗钱工作也应顺势而为,合理利用多种来源的海量数据,进行更深入的挖掘,使预防、打击洗钱和恐怖组织犯罪的工作更精准。
目前的可疑交易的甄别需要金融机构反洗钱人员借助系统内各业务系统的数据,从客户的年龄、职业、行业、所处地区、交易对手、资金来源及去向等方面入手,对系统筛选出的数据进一步识别,从而把待甄别数据划分为正常和可疑两个类型。人工识别准确与否,依赖于客户在金融机构留存的基础信息是否全面、完整以及资金链条是否可追溯。虚假的信息和跨行交易、第三方支付平台造成的资金交易链断裂,都会给可疑交易甄别工作带来一定的困难。
基于大数据的反洗钱工作,除了使用金融机构、第三方支付平台之间资金流动数据外,还可以组合使用来自工商、税务、房管、海关、贸易、交通、质检、劳动人事、公安、法院等政府部门以及消费、娱乐、社交等商业活动及人民生活领域多个源头的数据。如通过工商、税务、司法等平台可查询对公客户是否存在证照过期、偷税、漏税、违法犯罪等形成的不良记录。涉及到个人客户,可以查询其是否有过不良信用记录等情况。通过这些途径,扩大了客户信息的来源,通过客户信息资料比对,可以使可疑交易的识别更加精准。
总之,大数据对反洗钱的影响是全面而深刻的,客户身份识别就像画像一样,各方面的信息积累越多,就越描越细,根据其以往轨迹可以分析其行为特征,从中找出异常交易,从而挖掘背后隐藏的违法行为。为此,笔者在基于实际工作中遇到的问题提出对利用大数据预防、打击洗钱和恐怖组织犯罪的工作建议。
为大数据开放共享建立制度保障。大数据的开放使用是世界趋势,大数据是治理现代化的一种技术路径,可以依靠海量的数据搜集和精准的数据分析增强决策的科学性,对政府管理有着重要意义,政府应有所作为。信息公开是政府利用大数据治国的一个必要条件,我国虽然制定了《政府信息公开条例》,但实施几年以来,政府各部门对信息的封锁依然如故。要想完全开放共享大数据,政府应加强制度上的建设,建立国家层面的信息法,为大数据开放共享建立相应的社会保障制度。通过立法框架和体制的修改,推动数据共享和接入。
建立国家级数据仓库和网络。数据合并需要技术支持,需要有专门部门对不同数据源进行整合,转化统一,形成可以实现检索、汇总等,而对只有建立国家级这样的数据仓库,才能为相关部门所用。要能够使数据仓库不断吸收最新的数据,并得到有效维护和充分利用,就需要建立能有效收集、维护和使用数据的网络。这同样需要政府有所作为:建立一个跨系统、跨平台、跨数据结构的政府综合信息处理网络平台。通过建立一张遍布全国、互相联系、顺畅流通的网,消除信息孤岛,使大数据流动起来,确保大数据能在各机构间得到有效的使用。
互通互联体系的建立需要一个漫长的过程。但金融机构可以在某一领域内进行尝试,如金融机构与第三方支付平台分享信息,共同构建甄别系统,加上互联网技术的运用,就能加大防止恐怖融资和网上洗钱力度,也可为大数据在反洗钱工作中的应用逐步积累经验。
建立保护隐私安全的法律法规。大数据时代的信息安全需要有明确的法律和惩罚措施,对大数据拥有者进行约束。有了针对大数据安全的法律法规,使用数据的部门、机构就需要对数据生产者可能造成的影响、对涉及个人数据再利用的行为进行正规评估,为其行为承担责任。作为金融机构,应严格执行客户信息保密制度。应用大数据对可疑交易进行识别,必然会掌握客户的海量信息。因此,客户信息保密制度的执行就显得尤为重要。一要选择业务素质和政治觉悟高的人员从事反洗钱甄别工作;二要与从业人员签定保密承诺书;三要加强对反洗钱从业人员保密意识的培养;四要对各类业务系统的进入实行严格的授权管理。
高度重视大数据人才的招募和培养。金融机构利用大数据反洗钱必须拥有专业的人才和完善的人才管理配套制度。因此,金融机构在建立自己的大数据反洗钱专业团队时,要以大数据平台建设为基础,积极招募和培养精通数据管理和分析的高级人才,打造专业、高效、灵活的大数据分析团队。而在管理方面,需要对现有管理架构、组织体系、资源配置和权力结构进行重组,让数据管理与分析成为反洗钱工作的重心。同时加强基层机构原有员工的培训力度,努力提高他们对洗钱犯罪行为方式的了解,注重对相关的新型反洗钱专业技能的培训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23