大数据分析技术的发展_数据分析师
所谓的“大数据”并不只是数量上的“大”。简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义: 1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。
2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。
3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。 4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。 近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。
据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。
然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务? 大数据分析技术最初起源于互联网行业。网页存档、用户点击、商品信息、用户关系等数据形成了持续增长的海量数据集。这些大数据中蕴藏着大量可以用于增强用户体验、提高服务质量和开发新型应用的知识,而如何高效和准确的发现这些知识就基本决定了各大互联网公司在激烈竞争环境中的位置。首先,以Google为首的技术型互联网公司提出了MapReduce的技术框架,利用廉价的PC服务器集群,大规模并发处理批量事务。 利用文件系统存放非结构化数据,加上完善的备份和容灾策略,这套经济实惠的大数据解决方案与之前昂贵的企业小型机集群+商业数据库方案相比,不仅没有丢失性能,而且还赢在了可扩展性上。
之前,我们在设计一个数据中心解决方案的前期,就要考虑到方案实施后的可扩展性。通常的方法是预估今后一段时期内的业务量和数据量,加入多余的计算单元(CPU)和存储,以备不时只需。 这样的方式直接导致了前期一次性投资的巨大,并且即使这样也依然无法保证计算需求和存储超出设计量时的系统性能。而一旦需要扩容,问题就会接踵而来。首先是商业并行数据库通常需要各节点物理同构,也就是具有近似的计算和存储能力。而随着硬件的更新,我们通常加入的新硬件都会强于已有的硬件。
这样,旧硬件就成为了系统的瓶颈。为了保证系统性能,我们不得不把旧硬件逐步替换掉,经济成本损失巨大。其次,即使是当前最强的商业并行数据库,其所能管理的数据节点也只是在几十或上百这个数量级,这主要是由于架构上的设计问题,所以其可扩展性必然有限。 而MapReduce+GFS框架,不受上述问题的困扰。需要扩容了,只需增加个机柜,加入适当的计算单元和存储,集群系统会自动分配和调度这些资源,丝毫不影响现有系统的运行。如今,我们用得更多的是Google MapReduce的开源实现,即Hadoop。
除了计算模型的发展,与此同时,人们也在关注着数据存储模型。传统的关系型数据库由于其规范的设计、友好的查询语言、高效的数据处理在线事务的能力,长时间地占据了市场的主导地位。 然而,其严格的设计定式、为保证强一致性而放弃性能、可扩展性差等问题在大数据分析中被逐渐暴露。随之而来,NoSQL数据存储模型开始风行。NoSQL,也有人理解为Not Only SQL,并不是一种特定的数据存储模型,它是一类非关系型数据库的统称。其特点是:没有固定的数据表模式、可以分布式和水平扩展。NoSQL并不是单纯的反对关系型数据库,而是针对其缺点的一种补充和扩展。典型的NoSQL数据存储模型有文档存储、键-值存储、图存储、对象数据库、列存储等。而比较流行的,不得不提到Google提出的Bigtable。 Bigtable是一种用于管理海量结构化数据的分布式存储系统,其数据通常可以跨成千个节点进行分布式存储,总数据量可达PB级(10的15次方字节,106GB)。HBase是其开源实现。
如今,在开源社区,围绕Google MapReduce框架,成长出了一批优秀的开源项目。这些项目在技术和实现上相互支持和依托,逐渐形成了一个特有的生态系统。这里借用Cloudera所描绘的架构图来展现Hadoop生态系统。这个系统为我们实现优质廉价的大数据分析提供了坚实的技术基础。 综上所述,面对大数据分析的挑战,不管是计算模型还是存储模型技术都有了超前的进步。然而,仅凭借当前的技术,我们准备好面对健康云上的大数据分析的挑战了吗?下一节,我们将重点分析医疗数据的特有性质为大数据分析带来的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03