京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业大数据分析:值得期待的大趋势(1)_数据分析培训
据国外媒体报道,据市场研究公司idc预测,2015年大数据市场规模将从2010年的32亿美元增长到170亿美元,复合年增长率为40%。大数据是一个庞大的新的领域,其中的数据集可以增长的非常庞大,以至于使用传统的数据库管理工具也很难处理。处理这种问题所需要的新工具、框架、硬件、软件和服务是一个巨大的市场机会。随着企业用户越来越多地需要连续不断地访问数据,好的大数据工具集将以最低的成本和接近实时的速度提供可伸缩的、高性能的分析。通过分析这种数据,企业可得到更大的智能以及竞争优势。下面是hadoop和大数据专业厂商mapr共同创始人和首席执行官约翰·施罗德(john schroeder)对2014大数据市场的预测。
1. sql拥有大数据的最大潜力
用于hadoop(分布式计算)的sql的发展能够让商业分析师利用自己的技能和选择的sql工具执行大数据项目。开发人员可以选择hive、drill和impala等apache项目,以及选择hadapt、hawq和splice machine等公司的专有技术。
2. 尽管如此 sql还面临挑战
sql需要数据结构。而集中的结构化数据可引起延迟并且需要人工管理。sql还限制分析类型。过分强调sql将延迟机构全面利用其数据价值的努力和延迟反应。
3. 身份识别是主要的数据安全问题
随着hadoop(分布式计算)中提供的接入控制能力的猛烈攻击,机构迅速认识到线路级身份识别是必要的基础。没有充分的身份识别,任何更高级的控制都很容易被绕过,妨碍预定的安全计划。
4. 数据错误变成学习机会
2014年机构将出现许多数据错误。数据错误将表明基础的来源系统的问题吗?数据错误是在下游分析中出现偏差导致的数据提取问题吗?数据错误将表明定义差异或者缺少跨部门和业务部门的一致性吗?2014年将看到解决数据异常问题。
5. 出现可运行的hadoop
2014年将看到hadoop在各个行业中的生产部署显着增加。这将显示出hadoop在运营中的实力。在那里,生产应用与分析结合在一起能够提供可以衡量的商业优势,如在客户化零售建议、诈骗检测和试验传感器数据进行规范的维护等应用中提供这些优势。
6. 更多的数据仓库将部署企业数据中心
数据中心把数据提取处理和数据从企业数据仓库卸载到hadoop。作为一个核心的中心企业中心,数据中心要便宜10倍,能够对额外的处理或者新的应用进行更多的分析。
7. 新的以数据为中心的应用将成为强制性的
利用大数据的能力将在2014年成为竞争的武器。更多的公司将使用大数据和hadoop准确地针对个人消费者的偏爱追逐赚钱的追加销售和交叉销售的机会,更好地缓解风险以及减少生产和开销成本。
8. 数据成为数据中心的核心
机构将从开发者过渡到大数据计划中。it部门将越来越多地担负定义支持多种应用的数据基础设施的任务,把重点集中在部署、处理和保护一个机构的核心资产所需要的基础设施方面。
9. 搜索将成为非结构化的查询语言
2013年有大量的用于hadoop的sql计划。2014年将是这种非结构化查询语言成为重点的一年。把搜索集成到hadoop将为查找重要信息的企业用户提供一种简单和直观的方法。搜索引擎还是包括推荐引擎在内的许多发现和分析应用的核心。
10. hadoop将获得地位
hadoop将继续取代其它it开支,颠覆企业数据仓库和企业存储。例如,甲骨文的主要营收目标在过去的10个季度里有5个季度没有实现。teradata在过去的5个季度有4个季度没有实现营收和利润目标。
11. hadoop仍需要帮助才能成为主流应用
更多的机构认识到apache hadoop本身还没有准备好在企业应用。apache hadoop不是为系统管理或者灾难恢复等统一企业it流程设计的。企业将继续推进混合的解决方案,把架构技术创新与apache hadoop的开源软件结合在一起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15