
天文中的那些大数据_数据分析师
大数据是领域相关的,如今大数据在各个领域都有着卓越的表现。比如,苏州政府、中石油等都使用大数据魔镜——免费的大数据可视化分析工具对自己领域的大数据进行了分析与挖掘。政府、企业与医疗等机构的数据涉及到安全、利益与隐私问题,要开放与共享是有难度的。但是如果研究大数据的处理技术,而不是去挖掘具有商业价值的大数据,不妨换个思路,用不涉及安全、利益与隐私问题的大数据作为数据源。
被誉为“大数据时代的预言家”维克托•迈尔•舍恩伯格的国外大数据系统研究的先河之作《大数据时代:生活、工作与思维的大变革》书里“大数据先锋”一节中写到:“天文学,信息爆炸的起源“。
只有考虑到社会各个方面的变化趋势,我们才能真正意识到信息爆炸已经到来。我们的数字世界一直在扩张。以天文学为例,2000年斯隆数字巡天(Sloan Digital Sky Survey)项目启动的时候,位于新墨西哥州的望远镜在短短几周内收集到的数据,已经比天文学历史上总共收集的数据还要多。到了2010年,信息档案已经高达1.4×242字节。不过,预计2016年在智利投入使用的大型视场全景巡天望远镜(Large SynopticSurvey Telescope,LSST)能在五天之内就获得同样多的信息。天文学领域的变化在各个领域都在发生。”
从上可知,天文学是最早迎接大数据挑战的领域。随着天文观测技术的发展,天文学已经进入了一个信息丰富的大数据时代,天文数据正在以TB级甚至PB量级的速度不断增长。目前国际上已有多个国家进行了大规模的巡天项目,除SDSS(Sloan Digital Sky Survey)外,还有Pan-STARRS1(The Panoramic Survey Telescope and Rapid Response System)、WISE (Wide-field Infrared Survey Explorer)、 2MASS (Two Micron All Sky Survey)、Gaia 、UKIDSS (UKIRT Infrared Deep Sky Survey)、NVSS(The NRAO VLA Sky Survey)、FIRST(Faint Images of the Radio Sky at Twenty-cm)、 2df (Two-degree-Field Galaxy Redshift Survey)、LAMOST(The Large Sky Area Multi-ObjectFiber Spectroscopic Telescope –郭守敬望远镜)等等,这些巡天项目每天都在产生着海量的天文数据。目前,业界对大数据的看法不尽相同,但大数据应具备的4V特征已达成共识,即:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(精确)或 Value (价值)。天文数据具备4V特征,因此天文数据是大数据。在难以获取其他大数据时,不妨考虑根据天文学领域的需求,结合计算机科学、模式识别、系统科学等相关学科领域的理论与方法,研究与发展天文大数据的处理技术。
不同于其他具有商业价值的大数据应用领域,研究天文大数据是面向基础自然科学研究领域的应用。相信可以推动对大数据研究的的发展,在研究技术上形成百花齐放的局面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01