京公网安备 11010802034615号
经营许可证编号:京B2-20210330
移动PM如何分析和挖掘数据
数据是一个产品每天都要盯着的东西,虽说数字也会撒谎,但是在产品设计中数据,常常作为辅助设计决策和与研发沟通的必不可少的东西之一。
1. 移动产品经理需要跟踪app的哪些数据?
在做数据分析之前,对移动产品人员来说,首先要了解在移动互联网领域,我们需要关注那些数据呢?
讨论发现,不同的产品关注的数据数据分为:基本数据、跟产品类别无关的数据和跟产品类别相关的数据。
基础数据:下载量、激活量、新增用户量、活跃用户
社交:用户分布、用户留存(次日、3日、7日、月、次月、3月)
电商:淘宝指数、网站流量、内容转换率
地图导航类:用户每日打开次数、地域分布
内容类:内容转化率(内容下载量/内容浏览量)、留存量
工具类:功能点击量、应用商城排名
其他:竞品数据(下载、激活等)
2. 如何对相关数据进行分析?
在进行数据发掘之前首先可以对产品做相应的数据建模,然后经过上线跟踪、分析,对比原来的模型,是否有遵循原来的模型。如果是模型不合理,则需要对数据模型进行矫正。如果出入较大则需要对数据进行分析,或者根据分析出来的数据 在产品上做内部测试或者灰度测试然后对比,如果原来的模型问题不大,再挖细节,分析其他数据找原因,结合数据模型,如果有问题了以后,针对问题追踪数据,进行分析。
一、对于启动,留存这些数据。主要是看异常,发现异常以后再去找寻原因和问题
二、平时某个很正常的数据突然变化,我们也会追踪,
三、在线用户,进行每日跟踪,是否呈曲线自然生长,或者出现异常。
四、活跃用户,对用户的使用频次以及有效行为进行跟踪及分析。
数据分析主要通过数据工具进行分析。数据分析主要为两种:
一、第三方数据分析工具。如友盟,可以快速的接入,节省成本,比较适合创业型公司及刚上线产品,但是无法对关键数据在突发异样时进行跟踪。
二、自己开发数据分析工具,可以对每个数据进行实时跟踪,并且快速做出产品的调整,需要足够的开发人员及成本,比较适合大型公司或者成熟型产品。
(此部分感谢Ted-PD-北京 童鞋的分享)
3.需要对那些关键指标进行挖掘?挖掘后有何意义?
在对关键指标进行发掘,不同的产品,有着不同的关键指标。比如在内容型应用中,周留存影响关于用户对功能的使用,月留存,关系用户对内容关注,次月留存,关系用户的体系。
社交:主要关注用户分布、用户留存、活跃用户、功能使用频次以及有效行为等社交行为数据分析,通过数据分析及发掘来了解用户的社交特征,最总了解用户到的社交属性优化产品的社交传播。
电商:主要淘宝指数、网站流量、收藏、购买等数据,了解用户的电商消费特征。
地图导航等工具类应用:了解功能的使用时间、区域、地段等数据,从而了解相关对相关产品的功能使用,以及路况信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27